Tianshou/examples/atari/atari_ppo.py

279 lines
9.8 KiB
Python
Raw Normal View History

import argparse
import os
import pprint
import numpy as np
import torch
from atari_network import DQN
from atari_wrapper import make_atari_env
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import ICMPolicy, PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import ActorCritic
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='PongNoFrameskip-v4')
parser.add_argument('--seed', type=int, default=4213)
parser.add_argument('--scale-obs', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=100000)
2022-02-12 12:04:21 -08:00
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=100000)
parser.add_argument('--step-per-collect', type=int, default=1000)
parser.add_argument('--repeat-per-collect', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--hidden-size', type=int, default=512)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--rew-norm', type=int, default=False)
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.01)
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--lr-decay', type=int, default=True)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=int, default=0)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--recompute-adv', type=int, default=0)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument('--frames-stack', type=int, default=4)
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument('--resume-id', type=str, default=None)
parser.add_argument(
'--logger',
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='watch the play of pre-trained policy only'
)
parser.add_argument('--save-buffer-name', type=str, default=None)
parser.add_argument(
'--icm-lr-scale',
type=float,
default=0.,
help='use intrinsic curiosity module with this lr scale'
)
parser.add_argument(
'--icm-reward-scale',
type=float,
default=0.01,
help='scaling factor for intrinsic curiosity reward'
)
parser.add_argument(
'--icm-forward-loss-weight',
type=float,
default=0.2,
help='weight for the forward model loss in ICM'
)
return parser.parse_args()
def test_ppo(args=get_args()):
env, train_envs, test_envs = make_atari_env(
args.task,
args.seed,
args.training_num,
args.test_num,
scale=args.scale_obs,
frame_stack=args.frames_stack,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# should be N_FRAMES x H x W
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# define model
net = DQN(
*args.state_shape,
args.action_shape,
device=args.device,
features_only=True,
output_dim=args.hidden_size
)
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False)
critic = Critic(net, device=args.device)
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
# define policy
def dist(p):
return torch.distributions.Categorical(logits=p)
policy = PPOPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=False,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
eps_clip=args.eps_clip,
value_clip=args.value_clip,
dual_clip=args.dual_clip,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
).to(args.device)
if args.icm_lr_scale > 0:
feature_net = DQN(
*args.state_shape, args.action_shape, args.device, features_only=True
)
action_dim = np.prod(args.action_shape)
feature_dim = feature_net.output_dim
icm_net = IntrinsicCuriosityModule(
feature_net.net,
feature_dim,
action_dim,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy, icm_net, icm_optim, args.icm_lr_scale, args.icm_reward_scale,
args.icm_forward_loss_weight
).to(args.device)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# replay buffer: `save_last_obs` and `stack_num` can be removed together
# when you have enough RAM
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
# collector
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# log
log_name = 'ppo_icm' if args.icm_lr_scale > 0 else 'ppo'
log_path = os.path.join(args.logdir, args.task, log_name)
if args.logger == "tensorboard":
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
else:
logger = WandbLogger(
save_interval=1,
project=args.task,
name=log_name,
run_id=args.resume_id,
config=args,
)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
if env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
elif 'Pong' in args.task:
return mean_rewards >= 20
else:
return False
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, 'checkpoint.pth')
torch.save({'model': policy.state_dict()}, ckpt_path)
return ckpt_path
# watch agent's performance
def watch():
print("Setup test envs ...")
policy.eval()
test_envs.seed(args.seed)
if args.save_buffer_name:
print(f"Generate buffer with size {args.buffer_size}")
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(test_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
result = collector.collect(n_step=args.buffer_size)
print(f"Save buffer into {args.save_buffer_name}")
# Unfortunately, pickle will cause oom with 1M buffer size
buffer.save_hdf5(args.save_buffer_name)
else:
print("Testing agent ...")
test_collector.reset()
result = test_collector.collect(
n_episode=args.test_num, render=args.render
)
rew = result["rews"].mean()
print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')
if args.watch:
watch()
exit(0)
# test train_collector and start filling replay buffer
train_collector.collect(n_step=args.batch_size * args.training_num)
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger,
test_in_train=False,
resume_from_log=args.resume_id is not None,
save_checkpoint_fn=save_checkpoint_fn,
)
pprint.pprint(result)
watch()
if __name__ == '__main__':
test_ppo(get_args())