Tianshou/test/modelbased/test_psrl.py

135 lines
4.7 KiB
Python
Raw Normal View History

import argparse
import os
import pprint
import numpy as np
import pytest
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import PSRLPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
try:
import envpool
except ImportError:
envpool = None
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='NChain-v0')
2022-03-04 03:35:39 +01:00
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--episode-per-collect', type=int, default=1)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.0)
parser.add_argument('--rew-mean-prior', type=float, default=0.0)
parser.add_argument('--rew-std-prior', type=float, default=1.0)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--eps', type=float, default=0.01)
parser.add_argument('--add-done-loop', action="store_true", default=False)
parser.add_argument(
'--logger',
type=str,
default="wandb",
choices=["wandb", "tensorboard", "none"],
)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_psrl(args=get_args()):
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make_gym(
args.task, num_envs=args.training_num, seed=args.seed
)
test_envs = envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed)
2022-03-04 03:35:39 +01:00
if args.reward_threshold is None:
default_reward_threshold = {"NChain-v0": 3400}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
print("reward threshold:", args.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy = PSRLPolicy(
trans_count_prior, rew_mean_prior, rew_std_prior, args.gamma, args.eps,
args.add_done_loop
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs)
# Logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1, project='psrl', name='wandb_test', config=args
)
if args.logger != "none":
log_path = os.path.join(args.logdir, args.task, 'psrl')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else:
logger.load(writer)
else:
logger = LazyLogger()
def stop_fn(mean_rewards):
2022-03-04 03:35:39 +01:00
return mean_rewards >= args.reward_threshold
train_collector.collect(n_step=args.buffer_size, random=True)
# trainer, test it without logger
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
1,
args.test_num,
0,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
logger=logger,
test_in_train=False,
)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
elif env.spec.reward_threshold:
assert result["best_reward"] >= env.spec.reward_threshold
if __name__ == '__main__':
test_psrl()