Tianshou/test/continuous/test_sac_with_il.py

165 lines
7.0 KiB
Python
Raw Normal View History

import os
2020-03-23 17:17:41 +08:00
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import BasicLogger
from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
2020-03-23 17:17:41 +08:00
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer
2020-04-13 19:37:27 +08:00
from tianshou.policy import SACPolicy, ImitationPolicy
from tianshou.utils.net.continuous import Actor, ActorProb, Critic
2020-03-23 17:17:41 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=0)
2020-03-23 17:17:41 +08:00
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
2020-04-13 19:37:27 +08:00
parser.add_argument('--il-lr', type=float, default=1e-3)
2020-03-23 17:17:41 +08:00
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=24000)
parser.add_argument('--il-step-per-epoch', type=int, default=500)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
2020-03-23 17:17:41 +08:00
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--imitation-hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=10)
2020-03-23 17:17:41 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
2020-06-03 13:59:47 +08:00
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--ignore-done', type=int, default=1)
parser.add_argument('--n-step', type=int, default=4)
2020-03-23 17:17:41 +08:00
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
2020-04-13 19:37:27 +08:00
def test_sac_with_il(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN
2020-03-23 17:17:41 +08:00
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
2020-03-23 17:17:41 +08:00
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.training_num)])
2020-03-23 17:17:41 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.test_num)])
2020-03-23 17:17:41 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = ActorProb(net, args.action_shape, max_action=args.max_action,
device=args.device, unbounded=True).to(args.device)
2020-03-23 17:17:41 +08:00
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic1 = Critic(net_c1, device=args.device).to(args.device)
2020-03-23 17:17:41 +08:00
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic2 = Critic(net_c2, device=args.device).to(args.device)
2020-03-23 17:17:41 +08:00
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
action_range=[env.action_space.low[0], env.action_space.high[0]],
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
2020-06-03 13:59:47 +08:00
reward_normalization=args.rew_norm,
estimation_step=args.n_step)
2020-03-23 17:17:41 +08:00
# collector
train_collector = Collector(
policy, train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True)
2020-03-23 17:17:41 +08:00
test_collector = Collector(policy, test_envs)
2020-03-25 14:08:28 +08:00
# train_collector.collect(n_step=args.buffer_size)
2020-03-23 17:17:41 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)
2020-03-23 17:17:41 +08:00
2020-04-11 16:54:27 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
2020-03-23 17:17:41 +08:00
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size,
update_per_step=args.update_per_step, stop_fn=stop_fn,
save_fn=save_fn, logger=logger)
2020-03-25 14:08:28 +08:00
assert stop_fn(result['best_reward'])
2020-03-23 17:17:41 +08:00
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
2020-03-23 17:17:41 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-03-23 17:17:41 +08:00
2020-04-13 19:37:27 +08:00
# here we define an imitation collector with a trivial policy
policy.eval()
2020-04-13 19:37:27 +08:00
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -300 # lower the goal
net = Actor(
Net(args.state_shape, hidden_sizes=args.imitation_hidden_sizes,
device=args.device),
args.action_shape, max_action=args.max_action, device=args.device
).to(args.device)
2020-04-13 19:37:27 +08:00
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
2020-04-20 11:25:20 +08:00
il_policy = ImitationPolicy(net, optim, mode='continuous')
il_test_collector = Collector(
il_policy,
DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
)
2020-04-13 19:37:27 +08:00
train_collector.reset()
result = offpolicy_trainer(
il_policy, train_collector, il_test_collector, args.epoch,
args.il_step_per_epoch, args.step_per_collect, args.test_num,
args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger)
2020-04-13 19:37:27 +08:00
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
il_policy.eval()
2020-04-13 19:37:27 +08:00
collector = Collector(il_policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-04-13 19:37:27 +08:00
2020-03-23 17:17:41 +08:00
if __name__ == '__main__':
2020-04-13 19:37:27 +08:00
test_sac_with_il()