sac
This commit is contained in:
parent
30a0fc079c
commit
e95218e295
1
.gitignore
vendored
1
.gitignore
vendored
@ -136,3 +136,4 @@ dmypy.json
|
||||
# customize
|
||||
flake8.sh
|
||||
log/
|
||||
MUJOCO_LOG.TXT
|
||||
|
114
test/continuous/test_sac.py
Normal file
114
test/continuous/test_sac.py
Normal file
@ -0,0 +1,114 @@
|
||||
import gym
|
||||
import torch
|
||||
import pprint
|
||||
import argparse
|
||||
import numpy as np
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from tianshou.policy import SACPolicy
|
||||
from tianshou.trainer import offpolicy_trainer
|
||||
from tianshou.data import Collector, ReplayBuffer
|
||||
from tianshou.env import VectorEnv, SubprocVectorEnv
|
||||
|
||||
if __name__ == '__main__':
|
||||
from net import ActorProb, Critic
|
||||
else: # pytest
|
||||
from test.continuous.net import ActorProb, Critic
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
||||
parser.add_argument('--seed', type=int, default=1626)
|
||||
parser.add_argument('--buffer-size', type=int, default=20000)
|
||||
parser.add_argument('--actor-lr', type=float, default=3e-4)
|
||||
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--tau', type=float, default=0.005)
|
||||
parser.add_argument('--alpha', type=float, default=0.2)
|
||||
parser.add_argument('--epoch', type=int, default=100)
|
||||
parser.add_argument('--step-per-epoch', type=int, default=2400)
|
||||
parser.add_argument('--collect-per-step', type=int, default=10)
|
||||
parser.add_argument('--batch-size', type=int, default=128)
|
||||
parser.add_argument('--layer-num', type=int, default=1)
|
||||
parser.add_argument('--training-num', type=int, default=8)
|
||||
parser.add_argument('--test-num', type=int, default=100)
|
||||
parser.add_argument('--logdir', type=str, default='log')
|
||||
parser.add_argument(
|
||||
'--device', type=str,
|
||||
default='cuda' if torch.cuda.is_available() else 'cpu')
|
||||
args = parser.parse_known_args()[0]
|
||||
return args
|
||||
|
||||
|
||||
def test_sac(args=get_args()):
|
||||
env = gym.make(args.task)
|
||||
if args.task == 'Pendulum-v0':
|
||||
env.spec.reward_threshold = -250
|
||||
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||
args.action_shape = env.action_space.shape or env.action_space.n
|
||||
args.max_action = env.action_space.high[0]
|
||||
# train_envs = gym.make(args.task)
|
||||
train_envs = VectorEnv(
|
||||
[lambda: gym.make(args.task) for _ in range(args.training_num)],
|
||||
reset_after_done=True)
|
||||
# test_envs = gym.make(args.task)
|
||||
test_envs = SubprocVectorEnv(
|
||||
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
||||
reset_after_done=False)
|
||||
# seed
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
train_envs.seed(args.seed)
|
||||
test_envs.seed(args.seed)
|
||||
# model
|
||||
actor = ActorProb(
|
||||
args.layer_num, args.state_shape, args.action_shape,
|
||||
args.max_action, args.device
|
||||
).to(args.device)
|
||||
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
||||
critic1 = Critic(
|
||||
args.layer_num, args.state_shape, args.action_shape, args.device
|
||||
).to(args.device)
|
||||
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
||||
critic2 = Critic(
|
||||
args.layer_num, args.state_shape, args.action_shape, args.device
|
||||
).to(args.device)
|
||||
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
||||
policy = SACPolicy(
|
||||
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
|
||||
args.tau, args.gamma, args.alpha,
|
||||
[env.action_space.low[0], env.action_space.high[0]],
|
||||
reward_normalization=True)
|
||||
# collector
|
||||
train_collector = Collector(
|
||||
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
||||
test_collector = Collector(policy, test_envs)
|
||||
train_collector.collect(n_step=args.buffer_size)
|
||||
# log
|
||||
writer = SummaryWriter(args.logdir)
|
||||
|
||||
def stop_fn(x):
|
||||
return x >= env.spec.reward_threshold
|
||||
|
||||
# trainer
|
||||
result = offpolicy_trainer(
|
||||
policy, train_collector, test_collector, args.epoch,
|
||||
args.step_per_epoch, args.collect_per_step, args.test_num,
|
||||
args.batch_size, stop_fn=stop_fn, writer=writer)
|
||||
if args.task == 'Pendulum-v0':
|
||||
assert stop_fn(result['best_reward'])
|
||||
train_collector.close()
|
||||
test_collector.close()
|
||||
if __name__ == '__main__':
|
||||
pprint.pprint(result)
|
||||
# Let's watch its performance!
|
||||
env = gym.make(args.task)
|
||||
collector = Collector(policy, env)
|
||||
result = collector.collect(n_episode=1, render=1 / 35)
|
||||
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
|
||||
collector.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sac()
|
@ -15,9 +15,10 @@ class DDPGPolicy(BasePolicy):
|
||||
tau=0.005, gamma=0.99, exploration_noise=0.1,
|
||||
action_range=None, reward_normalization=True):
|
||||
super().__init__()
|
||||
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||
self.actor_old.eval()
|
||||
self.actor_optim = actor_optim
|
||||
if actor is not None:
|
||||
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||
self.actor_old.eval()
|
||||
self.actor_optim = actor_optim
|
||||
if critic is not None:
|
||||
self.critic, self.critic_old = critic, deepcopy(critic)
|
||||
self.critic_old.eval()
|
||||
@ -28,7 +29,11 @@ class DDPGPolicy(BasePolicy):
|
||||
self._gamma = gamma
|
||||
assert 0 <= exploration_noise, 'noise should not be negative'
|
||||
self._eps = exploration_noise
|
||||
assert action_range is not None
|
||||
self._range = action_range
|
||||
self._action_bias = (action_range[0] + action_range[1]) / 2
|
||||
self._action_scale = (action_range[1] - action_range[0]) / 2
|
||||
# it is only a little difference to use rand_normal
|
||||
# self.noise = OUNoise()
|
||||
self._rew_norm = reward_normalization
|
||||
self.__eps = np.finfo(np.float32).eps.item()
|
||||
@ -53,19 +58,27 @@ class DDPGPolicy(BasePolicy):
|
||||
self.critic_old.parameters(), self.critic.parameters()):
|
||||
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||
|
||||
def process_fn(self, batch, buffer, indice):
|
||||
if self._rew_norm:
|
||||
self._rew_mean = buffer.rew.mean()
|
||||
self._rew_std = buffer.rew.std()
|
||||
return batch
|
||||
|
||||
def __call__(self, batch, state=None,
|
||||
model='actor', input='obs', eps=None):
|
||||
model = getattr(self, model)
|
||||
obs = getattr(batch, input)
|
||||
logits, h = model(obs, state=state, info=batch.info)
|
||||
logits += self._action_bias
|
||||
if eps is None:
|
||||
eps = self._eps
|
||||
# noise = np.random.normal(0, eps, size=logits.shape)
|
||||
# noise = self.noise(logits.shape, eps)
|
||||
# logits += torch.tensor(noise, device=logits.device)
|
||||
logits += torch.randn(size=logits.shape, device=logits.device) * eps
|
||||
if self._range:
|
||||
logits = logits.clamp(self._range[0], self._range[1])
|
||||
if eps > 0:
|
||||
logits += torch.randn(
|
||||
size=logits.shape, device=logits.device) * eps
|
||||
logits = logits.clamp(self._range[0], self._range[1])
|
||||
return Batch(act=logits, state=h)
|
||||
|
||||
def learn(self, batch, batch_size=None, repeat=1):
|
||||
@ -74,7 +87,7 @@ class DDPGPolicy(BasePolicy):
|
||||
dev = target_q.device
|
||||
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
|
||||
if self._rew_norm:
|
||||
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
|
||||
rew = (rew - self._rew_mean) / (self._rew_std + self.__eps)
|
||||
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
|
||||
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
|
||||
current_q = self.critic(batch.obs, batch.act)
|
||||
|
@ -9,18 +9,98 @@ from tianshou.policy import DDPGPolicy
|
||||
|
||||
class SACPolicy(DDPGPolicy):
|
||||
"""docstring for SACPolicy"""
|
||||
def __init__(self, actor, actor_optim, critic, critic_optim,
|
||||
tau, gamma, ):
|
||||
super().__init__()
|
||||
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||
self.actor_old.eval()
|
||||
self.actor_optim = actor_optim
|
||||
self.critic, self.critic_old = critic, deepcopy(critic)
|
||||
self.critic_old.eval()
|
||||
self.critic_optim = critic_optim
|
||||
|
||||
def __call__(self, batch, state=None):
|
||||
pass
|
||||
def __init__(self, actor, actor_optim, critic1, critic1_optim,
|
||||
critic2, critic2_optim, tau=0.005, gamma=0.99,
|
||||
alpha=0.2, action_range=None, reward_normalization=True):
|
||||
super().__init__(None, None, None, None, tau, gamma, 0,
|
||||
action_range, reward_normalization)
|
||||
self.actor, self.actor_optim = actor, actor_optim
|
||||
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
|
||||
self.critic1_old.eval()
|
||||
self.critic1_optim = critic1_optim
|
||||
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
|
||||
self.critic2_old.eval()
|
||||
self.critic2_optim = critic2_optim
|
||||
self._alpha = alpha
|
||||
self.__eps = np.finfo(np.float32).eps.item()
|
||||
|
||||
def train(self):
|
||||
self.training = True
|
||||
self.actor.train()
|
||||
self.critic1.train()
|
||||
self.critic2.train()
|
||||
|
||||
def eval(self):
|
||||
self.training = False
|
||||
self.actor.eval()
|
||||
self.critic1.eval()
|
||||
self.critic2.eval()
|
||||
|
||||
def sync_weight(self):
|
||||
for o, n in zip(
|
||||
self.critic1_old.parameters(), self.critic1.parameters()):
|
||||
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||
for o, n in zip(
|
||||
self.critic2_old.parameters(), self.critic2.parameters()):
|
||||
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||
|
||||
def __call__(self, batch, state=None, input='obs'):
|
||||
obs = getattr(batch, input)
|
||||
logits, h = self.actor(obs, state=state, info=batch.info)
|
||||
assert isinstance(logits, tuple)
|
||||
dist = torch.distributions.Normal(*logits)
|
||||
|
||||
x = dist.rsample()
|
||||
y = torch.tanh(x)
|
||||
act = y * self._action_scale + self._action_bias
|
||||
log_prob = dist.log_prob(x) - torch.log(
|
||||
self._action_scale * (1 - y.pow(2)) + self.__eps)
|
||||
act = act.clamp(self._range[0], self._range[1])
|
||||
return Batch(
|
||||
logits=logits, act=act, state=h, dist=dist, log_prob=log_prob)
|
||||
|
||||
def learn(self, batch, batch_size=None, repeat=1):
|
||||
pass
|
||||
obs_next_result = self(batch, input='obs_next')
|
||||
a_ = obs_next_result.act
|
||||
dev = a_.device
|
||||
batch.act = torch.tensor(batch.act, dtype=torch.float, device=dev)
|
||||
target_q = torch.min(
|
||||
self.critic1_old(batch.obs_next, a_),
|
||||
self.critic2_old(batch.obs_next, a_),
|
||||
) - self._alpha * obs_next_result.log_prob
|
||||
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
|
||||
if self._rew_norm:
|
||||
rew = (rew - self._rew_mean) / (self._rew_std + self.__eps)
|
||||
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
|
||||
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
|
||||
obs_result = self(batch)
|
||||
a = obs_result.act
|
||||
current_q1, current_q1a = self.critic1(
|
||||
np.concatenate([batch.obs, batch.obs]), torch.cat([batch.act, a])
|
||||
).split(batch.obs.shape[0])
|
||||
current_q2, current_q2a = self.critic2(
|
||||
np.concatenate([batch.obs, batch.obs]), torch.cat([batch.act, a])
|
||||
).split(batch.obs.shape[0])
|
||||
actor_loss = (self._alpha * obs_result.log_prob - torch.min(
|
||||
current_q1a, current_q2a)).mean()
|
||||
# critic 1
|
||||
critic1_loss = F.mse_loss(current_q1, target_q)
|
||||
self.critic1_optim.zero_grad()
|
||||
critic1_loss.backward(retain_graph=True)
|
||||
self.critic1_optim.step()
|
||||
# critic 2
|
||||
critic2_loss = F.mse_loss(current_q2, target_q)
|
||||
self.critic2_optim.zero_grad()
|
||||
critic2_loss.backward(retain_graph=True)
|
||||
self.critic2_optim.step()
|
||||
# actor
|
||||
self.actor_optim.zero_grad()
|
||||
actor_loss.backward()
|
||||
self.actor_optim.step()
|
||||
self.sync_weight()
|
||||
return {
|
||||
'loss/actor': actor_loss.detach().cpu().numpy(),
|
||||
'loss/critic1': critic1_loss.detach().cpu().numpy(),
|
||||
'loss/critic2': critic2_loss.detach().cpu().numpy(),
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ from tianshou.policy import DDPGPolicy
|
||||
|
||||
class TD3Policy(DDPGPolicy):
|
||||
"""docstring for TD3Policy"""
|
||||
|
||||
def __init__(self, actor, actor_optim, critic1, critic1_optim,
|
||||
critic2, critic2_optim, tau=0.005, gamma=0.99,
|
||||
exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2,
|
||||
@ -57,14 +58,13 @@ class TD3Policy(DDPGPolicy):
|
||||
if self._noise_clip >= 0:
|
||||
noise = noise.clamp(-self._noise_clip, self._noise_clip)
|
||||
a_ += noise
|
||||
if self._range:
|
||||
a_ = a_.clamp(self._range[0], self._range[1])
|
||||
a_ = a_.clamp(self._range[0], self._range[1])
|
||||
target_q = torch.min(
|
||||
self.critic1_old(batch.obs_next, a_),
|
||||
self.critic2_old(batch.obs_next, a_))
|
||||
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
|
||||
if self._rew_norm:
|
||||
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
|
||||
rew = (rew - self._rew_mean) / (self._rew_std + self.__eps)
|
||||
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
|
||||
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
|
||||
# critic 1
|
||||
|
Loading…
x
Reference in New Issue
Block a user