This commit is contained in:
Trinkle23897 2020-03-23 11:34:52 +08:00
parent a87563b8e6
commit 30a0fc079c
11 changed files with 254 additions and 13 deletions

View File

@ -79,7 +79,7 @@ def test_ddpg(args=get_args()):
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
test_collector = Collector(policy, test_envs)
# log
writer = SummaryWriter(args.logdir)

View File

@ -86,7 +86,7 @@ def _test_ppo(args=get_args()):
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.step_per_epoch)
# log
writer = SummaryWriter(args.logdir)

118
test/continuous/test_td3.py Normal file
View File

@ -0,0 +1,118 @@
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import TD3Policy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
if __name__ == '__main__':
from net import Actor, Critic
else: # pytest
from test.continuous.net import Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--exploration-noise', type=float, default=0.1)
parser.add_argument('--policy-noise', type=float, default=0.2)
parser.add_argument('--noise-clip', type=float, default=0.5)
parser.add_argument('--update-actor-freq', type=int, default=2)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_td3(args=get_args()):
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# train_envs = gym.make(args.task)
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, args.exploration_noise, args.policy_noise,
args.update_actor_freq, args.noise_clip,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=True)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.buffer_size)
# log
writer = SummaryWriter(args.logdir)
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, writer=writer)
if args.task == 'Pendulum-v0':
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_td3()

View File

@ -73,7 +73,7 @@ def test_a2c(args=get_args()):
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
test_collector = Collector(policy, test_envs)
# log
writer = SummaryWriter(args.logdir)

View File

@ -66,8 +66,8 @@ def test_dqn(args=get_args()):
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
train_collector.collect(n_step=args.batch_size)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.buffer_size)
# log
writer = SummaryWriter(args.logdir)

View File

@ -121,7 +121,7 @@ def test_pg(args=get_args()):
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
test_collector = Collector(policy, test_envs)
# log
writer = SummaryWriter(args.logdir)

View File

@ -78,7 +78,7 @@ def test_ppo(args=get_args()):
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
test_collector = Collector(policy, test_envs)
# log
writer = SummaryWriter(args.logdir)

View File

@ -4,6 +4,8 @@ from tianshou.policy.pg import PGPolicy
from tianshou.policy.a2c import A2CPolicy
from tianshou.policy.ddpg import DDPGPolicy
from tianshou.policy.ppo import PPOPolicy
from tianshou.policy.td3 import TD3Policy
from tianshou.policy.sac import SACPolicy
__all__ = [
'BasePolicy',
@ -12,4 +14,6 @@ __all__ = [
'A2CPolicy',
'DDPGPolicy',
'PPOPolicy',
'TD3Policy',
'SACPolicy',
]

View File

@ -18,9 +18,10 @@ class DDPGPolicy(BasePolicy):
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
self.actor_optim = actor_optim
self.critic, self.critic_old = critic, deepcopy(critic)
self.critic_old.eval()
self.critic_optim = critic_optim
if critic is not None:
self.critic, self.critic_old = critic, deepcopy(critic)
self.critic_old.eval()
self.critic_optim = critic_optim
assert 0 < tau <= 1, 'tau should in (0, 1]'
self._tau = tau
assert 0 < gamma <= 1, 'gamma should in (0, 1]'
@ -45,9 +46,6 @@ class DDPGPolicy(BasePolicy):
self.actor.eval()
self.critic.eval()
def process_fn(self, batch, buffer, indice):
return batch
def sync_weight(self):
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)

26
tianshou/policy/sac.py Normal file
View File

@ -0,0 +1,26 @@
import torch
import numpy as np
from copy import deepcopy
import torch.nn.functional as F
from tianshou.data import Batch
from tianshou.policy import DDPGPolicy
class SACPolicy(DDPGPolicy):
"""docstring for SACPolicy"""
def __init__(self, actor, actor_optim, critic, critic_optim,
tau, gamma, ):
super().__init__()
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
self.actor_optim = actor_optim
self.critic, self.critic_old = critic, deepcopy(critic)
self.critic_old.eval()
self.critic_optim = critic_optim
def __call__(self, batch, state=None):
pass
def learn(self, batch, batch_size=None, repeat=1):
pass

95
tianshou/policy/td3.py Normal file
View File

@ -0,0 +1,95 @@
import torch
import numpy as np
from copy import deepcopy
import torch.nn.functional as F
from tianshou.policy import DDPGPolicy
class TD3Policy(DDPGPolicy):
"""docstring for TD3Policy"""
def __init__(self, actor, actor_optim, critic1, critic1_optim,
critic2, critic2_optim, tau=0.005, gamma=0.99,
exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2,
noise_clip=0.5, action_range=None, reward_normalization=True):
super().__init__(actor, actor_optim, None, None,
tau, gamma, exploration_noise, action_range,
reward_normalization)
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._policy_noise = policy_noise
self._freq = update_actor_freq
self._noise_clip = noise_clip
self._cnt = 0
self._last = 0
self.__eps = np.finfo(np.float32).eps.item()
def train(self):
self.training = True
self.actor.train()
self.critic1.train()
self.critic2.train()
def eval(self):
self.training = False
self.actor.eval()
self.critic1.eval()
self.critic2.eval()
def sync_weight(self):
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic1_old.parameters(), self.critic1.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic2_old.parameters(), self.critic2.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def learn(self, batch, batch_size=None, repeat=1):
a_ = self(batch, model='actor_old', input='obs_next').act
dev = a_.device
noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise
if self._noise_clip >= 0:
noise = noise.clamp(-self._noise_clip, self._noise_clip)
a_ += noise
if self._range:
a_ = a_.clamp(self._range[0], self._range[1])
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_))
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
if self._rew_norm:
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
# critic 1
current_q1 = self.critic1(batch.obs, batch.act)
critic1_loss = F.mse_loss(current_q1, target_q)
self.critic1_optim.zero_grad()
critic1_loss.backward()
self.critic1_optim.step()
# critic 2
current_q2 = self.critic2(batch.obs, batch.act)
critic2_loss = F.mse_loss(current_q2, target_q)
self.critic2_optim.zero_grad()
critic2_loss.backward()
self.critic2_optim.step()
if self._cnt % self._freq == 0:
actor_loss = -self.critic1(
batch.obs, self(batch, eps=0).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self._last = actor_loss.detach().cpu().numpy()
self.actor_optim.step()
self.sync_weight()
self._cnt += 1
return {
'loss/actor': self._last,
'loss/critic1': critic1_loss.detach().cpu().numpy(),
'loss/critic2': critic2_loss.detach().cpu().numpy(),
}