Tianshou/examples/box2d/bipedal_hardcore_sac.py

153 lines
5.7 KiB
Python
Raw Normal View History

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import SubprocVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import SACPolicy
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=1000)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=8)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--rew-norm', type=int, default=0)
parser.add_argument('--ignore-done', type=int, default=0)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
return parser.parse_args()
class EnvWrapper(object):
"""Env wrapper for reward scale, action repeat and action noise"""
def __init__(self, task, action_repeat=3,
reward_scale=5, act_noise=0.3):
self._env = gym.make(task)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
self.act_noise = act_noise
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
# add action noise
action += self.act_noise * (-2 * np.random.random(4) + 1)
r = 0.0
for _ in range(self.action_repeat):
obs_, reward_, done_, info_ = self._env.step(action)
# remove done reward penalty
if done_:
break
r = r + reward_
# scale reward
return obs_, self.reward_scale * r, done_, info_
def test_sac_bipedal(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN
env = EnvWrapper(args.task)
def IsStop(reward):
return reward >= env.spec.reward_threshold
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
train_envs = SubprocVectorEnv(
[lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv([lambda: EnvWrapper(args.task, reward_scale=1)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
net_a, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net_c1, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic2 = Critic(net_c2, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, args.alpha,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=args.rew_norm,
ignore_done=args.ignore_done,
estimation_step=args.n_step)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=IsStop, save_fn=save_fn, writer=writer)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
if __name__ == '__main__':
test_sac_bipedal()