Add BipedalWalkerHardcore-v3 SAC example (#177)

This commit is contained in:
Imone 2020-08-05 10:29:41 +08:00 committed by GitHub
parent f2bcc55a25
commit 312b7551cc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,151 @@
import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import SubprocVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import SACPolicy
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=1000)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=8)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--rew-norm', type=int, default=0)
parser.add_argument('--ignore-done', type=int, default=0)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
class EnvWrapper(object):
"""Env wrapper for reward scale, action repeat and action noise"""
def __init__(self, task, action_repeat=3,
reward_scale=5, act_noise=0.3):
self._env = gym.make(task)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
self.act_noise = act_noise
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
# add action noise
action += self.act_noise * (-2 * np.random.random(4) + 1)
r = 0.0
for _ in range(self.action_repeat):
obs_, reward_, done_, info_ = self._env.step(action)
# remove done reward penalty
if done_:
break
r = r + reward_
# scale reward
return obs_, self.reward_scale * r, done_, info_
def test_sac_bipedal(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN
def IsStop(reward):
return reward >= 300 * 5
env = EnvWrapper(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
train_envs = SubprocVectorEnv(
[lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: EnvWrapper(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
net_a, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net_c1, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic2 = Critic(net_c2, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, args.alpha,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=args.rew_norm,
ignore_done=args.ignore_done,
estimation_step=args.n_step)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=IsStop, save_fn=save_fn, writer=writer)
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = EnvWrapper(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=16, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_sac_bipedal()