Add BipedalWalkerHardcore-v3 SAC example (#177)
This commit is contained in:
parent
f2bcc55a25
commit
312b7551cc
151
examples/bipedal_hardcore_sac.py
Normal file
151
examples/bipedal_hardcore_sac.py
Normal file
@ -0,0 +1,151 @@
|
||||
import os
|
||||
import gym
|
||||
import torch
|
||||
import pprint
|
||||
import argparse
|
||||
import numpy as np
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from tianshou.env import SubprocVectorEnv
|
||||
from tianshou.trainer import offpolicy_trainer
|
||||
from tianshou.data import Collector, ReplayBuffer
|
||||
from tianshou.policy import SACPolicy
|
||||
from tianshou.utils.net.common import Net
|
||||
from tianshou.utils.net.continuous import ActorProb, Critic
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
|
||||
parser.add_argument('--seed', type=int, default=0)
|
||||
parser.add_argument('--buffer-size', type=int, default=1000000)
|
||||
parser.add_argument('--actor-lr', type=float, default=3e-4)
|
||||
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--tau', type=float, default=0.005)
|
||||
parser.add_argument('--alpha', type=float, default=0.1)
|
||||
parser.add_argument('--epoch', type=int, default=1000)
|
||||
parser.add_argument('--step-per-epoch', type=int, default=2400)
|
||||
parser.add_argument('--collect-per-step', type=int, default=10)
|
||||
parser.add_argument('--batch-size', type=int, default=128)
|
||||
parser.add_argument('--layer-num', type=int, default=1)
|
||||
parser.add_argument('--training-num', type=int, default=8)
|
||||
parser.add_argument('--test-num', type=int, default=8)
|
||||
parser.add_argument('--logdir', type=str, default='log')
|
||||
parser.add_argument('--render', type=float, default=0.)
|
||||
parser.add_argument('--rew-norm', type=int, default=0)
|
||||
parser.add_argument('--ignore-done', type=int, default=0)
|
||||
parser.add_argument('--n-step', type=int, default=4)
|
||||
parser.add_argument(
|
||||
'--device', type=str,
|
||||
default='cuda' if torch.cuda.is_available() else 'cpu')
|
||||
args = parser.parse_known_args()[0]
|
||||
return args
|
||||
|
||||
|
||||
class EnvWrapper(object):
|
||||
"""Env wrapper for reward scale, action repeat and action noise"""
|
||||
def __init__(self, task, action_repeat=3,
|
||||
reward_scale=5, act_noise=0.3):
|
||||
self._env = gym.make(task)
|
||||
self.action_repeat = action_repeat
|
||||
self.reward_scale = reward_scale
|
||||
self.act_noise = act_noise
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
# add action noise
|
||||
action += self.act_noise * (-2 * np.random.random(4) + 1)
|
||||
r = 0.0
|
||||
for _ in range(self.action_repeat):
|
||||
obs_, reward_, done_, info_ = self._env.step(action)
|
||||
# remove done reward penalty
|
||||
if done_:
|
||||
break
|
||||
r = r + reward_
|
||||
# scale reward
|
||||
return obs_, self.reward_scale * r, done_, info_
|
||||
|
||||
|
||||
def test_sac_bipedal(args=get_args()):
|
||||
torch.set_num_threads(1) # we just need only one thread for NN
|
||||
|
||||
def IsStop(reward):
|
||||
return reward >= 300 * 5
|
||||
|
||||
env = EnvWrapper(args.task)
|
||||
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||
args.action_shape = env.action_space.shape or env.action_space.n
|
||||
args.max_action = env.action_space.high[0]
|
||||
|
||||
train_envs = SubprocVectorEnv(
|
||||
[lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
|
||||
# test_envs = gym.make(args.task)
|
||||
test_envs = SubprocVectorEnv(
|
||||
[lambda: EnvWrapper(args.task) for _ in range(args.test_num)])
|
||||
|
||||
# seed
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
train_envs.seed(args.seed)
|
||||
test_envs.seed(args.seed)
|
||||
|
||||
# model
|
||||
net_a = Net(args.layer_num, args.state_shape, device=args.device)
|
||||
actor = ActorProb(
|
||||
net_a, args.action_shape,
|
||||
args.max_action, args.device
|
||||
).to(args.device)
|
||||
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
||||
|
||||
net_c1 = Net(args.layer_num, args.state_shape,
|
||||
args.action_shape, concat=True, device=args.device)
|
||||
critic1 = Critic(net_c1, args.device).to(args.device)
|
||||
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
||||
|
||||
net_c2 = Net(args.layer_num, args.state_shape,
|
||||
args.action_shape, concat=True, device=args.device)
|
||||
critic2 = Critic(net_c2, args.device).to(args.device)
|
||||
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
||||
|
||||
policy = SACPolicy(
|
||||
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
|
||||
args.tau, args.gamma, args.alpha,
|
||||
[env.action_space.low[0], env.action_space.high[0]],
|
||||
reward_normalization=args.rew_norm,
|
||||
ignore_done=args.ignore_done,
|
||||
estimation_step=args.n_step)
|
||||
|
||||
# collector
|
||||
train_collector = Collector(
|
||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||
test_collector = Collector(policy, test_envs)
|
||||
# train_collector.collect(n_step=args.buffer_size)
|
||||
# log
|
||||
log_path = os.path.join(args.logdir, args.task, 'sac')
|
||||
writer = SummaryWriter(log_path)
|
||||
|
||||
def save_fn(policy):
|
||||
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
||||
|
||||
# trainer
|
||||
result = offpolicy_trainer(
|
||||
policy, train_collector, test_collector, args.epoch,
|
||||
args.step_per_epoch, args.collect_per_step, args.test_num,
|
||||
args.batch_size, stop_fn=IsStop, save_fn=save_fn, writer=writer)
|
||||
|
||||
test_collector.close()
|
||||
if __name__ == '__main__':
|
||||
pprint.pprint(result)
|
||||
# Let's watch its performance!
|
||||
env = EnvWrapper(args.task)
|
||||
collector = Collector(policy, env)
|
||||
result = collector.collect(n_episode=16, render=args.render)
|
||||
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
|
||||
collector.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sac_bipedal()
|
Loading…
x
Reference in New Issue
Block a user