ShmemVectorEnv Implementation (#174)
* add shmem vecenv, some add&fix in test_env * generalize test_env IO * pep8 fix * comment update * style change * pep8 fix * style fix * minor fix * fix a bug * test fix * change env * testenv bug fix& shmem support recurse dict * bugfix * pep8 fix * _NP_TO_CT enhance * doc update * docstring update * pep8 fix * style change * style fix * remove assert * minor Co-authored-by: Trinkle23897 <463003665@qq.com>
This commit is contained in:
parent
996e2f7c9b
commit
f2bcc55a25
@ -31,7 +31,7 @@ See :ref:`customized_trainer`.
|
||||
Parallel Sampling
|
||||
-----------------
|
||||
|
||||
Use :class:`~tianshou.env.VectorEnv` or :class:`~tianshou.env.SubprocVectorEnv`.
|
||||
Use :class:`~tianshou.env.VectorEnv`, :class:`~tianshou.env.SubprocVectorEnv` or :class:`~tianshou.env.ShmemVectorEnv`.
|
||||
::
|
||||
|
||||
env_fns = [
|
||||
|
@ -30,7 +30,7 @@ It is available if you want the original ``gym.Env``:
|
||||
train_envs = gym.make('CartPole-v0')
|
||||
test_envs = gym.make('CartPole-v0')
|
||||
|
||||
Tianshou supports parallel sampling for all algorithms. It provides three types of vectorized environment wrapper: :class:`~tianshou.env.VectorEnv`, :class:`~tianshou.env.SubprocVectorEnv`, and :class:`~tianshou.env.RayVectorEnv`. It can be used as follows:
|
||||
Tianshou supports parallel sampling for all algorithms. It provides four types of vectorized environment wrapper: :class:`~tianshou.env.VectorEnv`, :class:`~tianshou.env.SubprocVectorEnv`, :class:`~tianshou.env.ShmemVectorEnv`, and :class:`~tianshou.env.RayVectorEnv`. It can be used as follows:
|
||||
::
|
||||
|
||||
train_envs = ts.env.VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(8)])
|
||||
|
@ -2,35 +2,55 @@ import gym
|
||||
import time
|
||||
import random
|
||||
import numpy as np
|
||||
from gym.spaces import Discrete, MultiDiscrete, Box
|
||||
from gym.spaces import Discrete, MultiDiscrete, Box, Dict, Tuple
|
||||
|
||||
|
||||
class MyTestEnv(gym.Env):
|
||||
"""This is a "going right" task. The task is to go right ``size`` steps.
|
||||
"""
|
||||
|
||||
def __init__(self, size, sleep=0, dict_state=False, ma_rew=0,
|
||||
multidiscrete_action=False, random_sleep=False):
|
||||
def __init__(self, size, sleep=0, dict_state=False, recurse_state=False,
|
||||
ma_rew=0, multidiscrete_action=False, random_sleep=False):
|
||||
assert not (
|
||||
dict_state and recurse_state), \
|
||||
"dict_state and recurse_state cannot both be true"
|
||||
self.size = size
|
||||
self.sleep = sleep
|
||||
self.random_sleep = random_sleep
|
||||
self.dict_state = dict_state
|
||||
self.recurse_state = recurse_state
|
||||
self.ma_rew = ma_rew
|
||||
self._md_action = multidiscrete_action
|
||||
self.observation_space = Box(shape=(1, ), low=0, high=size - 1)
|
||||
if dict_state:
|
||||
self.observation_space = Dict(
|
||||
{"index": Box(shape=(1, ), low=0, high=size - 1),
|
||||
"rand": Box(shape=(1,), low=0, high=1, dtype=np.float64)})
|
||||
elif recurse_state:
|
||||
self.observation_space = Dict(
|
||||
{"index": Box(shape=(1, ), low=0, high=size - 1),
|
||||
"dict": Dict({
|
||||
"tuple": Tuple((Discrete(2), Box(shape=(2,),
|
||||
low=0, high=1, dtype=np.float64))),
|
||||
"rand": Box(shape=(1, 2), low=0, high=1,
|
||||
dtype=np.float64)})
|
||||
})
|
||||
else:
|
||||
self.observation_space = Box(shape=(1, ), low=0, high=size - 1)
|
||||
if multidiscrete_action:
|
||||
self.action_space = MultiDiscrete([2, 2])
|
||||
else:
|
||||
self.action_space = Discrete(2)
|
||||
self.reset()
|
||||
self.done = False
|
||||
self.index = 0
|
||||
self.seed()
|
||||
|
||||
def seed(self, seed=0):
|
||||
np.random.seed(seed)
|
||||
self.rng = np.random.RandomState(seed)
|
||||
|
||||
def reset(self, state=0):
|
||||
self.done = False
|
||||
self.index = state
|
||||
return self._get_dict_state()
|
||||
return self._get_state()
|
||||
|
||||
def _get_reward(self):
|
||||
"""Generate a non-scalar reward if ma_rew is True."""
|
||||
@ -39,10 +59,18 @@ class MyTestEnv(gym.Env):
|
||||
return [x] * self.ma_rew
|
||||
return x
|
||||
|
||||
def _get_dict_state(self):
|
||||
"""Generate a dict_state if dict_state is True."""
|
||||
return {'index': self.index, 'rand': np.random.rand()} \
|
||||
if self.dict_state else self.index
|
||||
def _get_state(self):
|
||||
"""Generate state(observation) of MyTestEnv"""
|
||||
if self.dict_state:
|
||||
return {'index': np.array([self.index], dtype=np.float32),
|
||||
'rand': self.rng.rand(1)}
|
||||
elif self.recurse_state:
|
||||
return {'index': np.array([self.index], dtype=np.float32),
|
||||
'dict': {"tuple": (np.array([1],
|
||||
dtype=np.int64), self.rng.rand(2)),
|
||||
"rand": self.rng.rand(1, 2)}}
|
||||
else:
|
||||
return np.array([self.index], dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
if self._md_action:
|
||||
@ -55,13 +83,13 @@ class MyTestEnv(gym.Env):
|
||||
time.sleep(sleep_time)
|
||||
if self.index == self.size:
|
||||
self.done = True
|
||||
return self._get_dict_state(), self._get_reward(), self.done, {}
|
||||
return self._get_state(), self._get_reward(), self.done, {}
|
||||
if action == 0:
|
||||
self.index = max(self.index - 1, 0)
|
||||
return self._get_dict_state(), self._get_reward(), self.done, \
|
||||
return self._get_state(), self._get_reward(), self.done, \
|
||||
{'key': 1, 'env': self} if self.dict_state else {}
|
||||
elif action == 1:
|
||||
self.index += 1
|
||||
self.done = self.index == self.size
|
||||
return self._get_dict_state(), self._get_reward(), \
|
||||
return self._get_state(), self._get_reward(), \
|
||||
self.done, {'key': 1, 'env': self}
|
||||
|
@ -67,10 +67,10 @@ def test_stack(size=5, bufsize=9, stack_num=4):
|
||||
if done:
|
||||
obs = env.reset(1)
|
||||
indice = np.arange(len(buf))
|
||||
assert np.allclose(buf.get(indice, 'obs'), np.array([
|
||||
[1, 1, 1, 2], [1, 1, 2, 3], [1, 2, 3, 4],
|
||||
[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3],
|
||||
[3, 3, 3, 3], [3, 3, 3, 4], [1, 1, 1, 1]]))
|
||||
assert np.allclose(buf.get(indice, 'obs'), np.expand_dims(
|
||||
[[1, 1, 1, 2], [1, 1, 2, 3], [1, 2, 3, 4],
|
||||
[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3],
|
||||
[3, 3, 3, 3], [3, 3, 3, 4], [1, 1, 1, 1]], axis=-1))
|
||||
print(buf)
|
||||
_, indice = buf2.sample(0)
|
||||
assert indice == [2]
|
||||
|
@ -72,34 +72,40 @@ def test_collector():
|
||||
c0 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=False),
|
||||
logger.preprocess_fn)
|
||||
c0.collect(n_step=3)
|
||||
assert np.allclose(c0.buffer.obs[:4], [0, 1, 0, 1])
|
||||
assert np.allclose(c0.buffer[:4].obs_next, [1, 2, 1, 2])
|
||||
assert np.allclose(c0.buffer.obs[:4], np.expand_dims(
|
||||
[0, 1, 0, 1], axis=-1))
|
||||
assert np.allclose(c0.buffer[:4].obs_next, np.expand_dims(
|
||||
[1, 2, 1, 2], axis=-1))
|
||||
c0.collect(n_episode=3)
|
||||
assert np.allclose(c0.buffer.obs[:10], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
|
||||
assert np.allclose(c0.buffer[:10].obs_next, [1, 2, 1, 2, 1, 2, 1, 2, 1, 2])
|
||||
assert np.allclose(c0.buffer.obs[:10], np.expand_dims(
|
||||
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1], axis=-1))
|
||||
assert np.allclose(c0.buffer[:10].obs_next, np.expand_dims(
|
||||
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2], axis=-1))
|
||||
c0.collect(n_step=3, random=True)
|
||||
c1 = Collector(policy, venv, ReplayBuffer(size=100, ignore_obs_next=False),
|
||||
logger.preprocess_fn)
|
||||
c1.collect(n_step=6)
|
||||
assert np.allclose(c1.buffer.obs[:11], [0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3])
|
||||
assert np.allclose(c1.buffer[:11].obs_next,
|
||||
[1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4])
|
||||
assert np.allclose(c1.buffer.obs[:11], np.expand_dims(
|
||||
[0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3], axis=-1))
|
||||
assert np.allclose(c1.buffer[:11].obs_next, np.expand_dims([
|
||||
1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4], axis=-1))
|
||||
c1.collect(n_episode=2)
|
||||
assert np.allclose(c1.buffer.obs[11:21], [0, 1, 2, 3, 4, 0, 1, 0, 1, 2])
|
||||
assert np.allclose(c1.buffer.obs[11:21], np.expand_dims(
|
||||
[0, 1, 2, 3, 4, 0, 1, 0, 1, 2], axis=-1))
|
||||
assert np.allclose(c1.buffer[11:21].obs_next,
|
||||
[1, 2, 3, 4, 5, 1, 2, 1, 2, 3])
|
||||
np.expand_dims([1, 2, 3, 4, 5, 1, 2, 1, 2, 3], axis=-1))
|
||||
c1.collect(n_episode=3, random=True)
|
||||
c2 = Collector(policy, dum, ReplayBuffer(size=100, ignore_obs_next=False),
|
||||
logger.preprocess_fn)
|
||||
c2.collect(n_episode=[1, 2, 2, 2])
|
||||
assert np.allclose(c2.buffer.obs_next[:26], [
|
||||
assert np.allclose(c2.buffer.obs_next[:26], np.expand_dims([
|
||||
1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5,
|
||||
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5])
|
||||
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5], axis=-1))
|
||||
c2.reset_env()
|
||||
c2.collect(n_episode=[2, 2, 2, 2])
|
||||
assert np.allclose(c2.buffer.obs_next[26:54], [
|
||||
assert np.allclose(c2.buffer.obs_next[26:54], np.expand_dims([
|
||||
1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5,
|
||||
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5])
|
||||
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5], axis=-1))
|
||||
c2.collect(n_episode=[1, 1, 1, 1], random=True)
|
||||
|
||||
|
||||
@ -145,6 +151,8 @@ def test_collector_with_async():
|
||||
assert j - i == env_lens[env_id[i]]
|
||||
obs_ground_truth += list(range(j - i))
|
||||
i = j
|
||||
obs_ground_truth = np.expand_dims(
|
||||
np.array(obs_ground_truth), axis=-1)
|
||||
assert np.allclose(obs, obs_ground_truth)
|
||||
|
||||
|
||||
@ -169,10 +177,10 @@ def test_collector_with_dict_state():
|
||||
batch = c1.sample(10)
|
||||
print(batch)
|
||||
c0.buffer.update(c1.buffer)
|
||||
assert np.allclose(c0.buffer[:len(c0.buffer)].obs.index, [
|
||||
assert np.allclose(c0.buffer[:len(c0.buffer)].obs.index, np.expand_dims([
|
||||
0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1.,
|
||||
0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0.,
|
||||
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.])
|
||||
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.], axis=-1))
|
||||
c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4),
|
||||
Logger.single_preprocess_fn)
|
||||
c2.collect(n_episode=[0, 0, 0, 10])
|
||||
@ -204,10 +212,10 @@ def test_collector_with_ma():
|
||||
batch = c1.sample(10)
|
||||
print(batch)
|
||||
c0.buffer.update(c1.buffer)
|
||||
obs = [
|
||||
obs = np.array(np.expand_dims([
|
||||
0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1.,
|
||||
0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0.,
|
||||
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.]
|
||||
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.], axis=-1))
|
||||
assert np.allclose(c0.buffer[:len(c0.buffer)].obs, obs)
|
||||
rew = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
|
||||
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
|
||||
|
@ -3,7 +3,7 @@ import numpy as np
|
||||
from gym.spaces.discrete import Discrete
|
||||
from tianshou.data import Batch
|
||||
from tianshou.env import VectorEnv, SubprocVectorEnv, \
|
||||
RayVectorEnv, AsyncVectorEnv
|
||||
RayVectorEnv, AsyncVectorEnv, ShmemVectorEnv
|
||||
|
||||
if __name__ == '__main__':
|
||||
from env import MyTestEnv
|
||||
@ -11,6 +11,24 @@ else: # pytest
|
||||
from test.base.env import MyTestEnv
|
||||
|
||||
|
||||
def recurse_comp(a, b):
|
||||
try:
|
||||
if isinstance(a, np.ndarray):
|
||||
if a.dtype == np.object:
|
||||
return np.array(
|
||||
[recurse_comp(m, n) for m, n in zip(a, b)]).all()
|
||||
else:
|
||||
return np.allclose(a, b)
|
||||
elif isinstance(a, (list, tuple)):
|
||||
return np.array(
|
||||
[recurse_comp(m, n) for m, n in zip(a, b)]).all()
|
||||
elif isinstance(a, dict):
|
||||
return np.array(
|
||||
[recurse_comp(a[k], b[k]) for k in a.keys()]).all()
|
||||
except(Exception):
|
||||
return False
|
||||
|
||||
|
||||
def test_async_env(num=8, sleep=0.1):
|
||||
# simplify the test case, just keep stepping
|
||||
size = 10000
|
||||
@ -56,17 +74,18 @@ def test_async_env(num=8, sleep=0.1):
|
||||
def test_vecenv(size=10, num=8, sleep=0.001):
|
||||
verbose = __name__ == '__main__'
|
||||
env_fns = [
|
||||
lambda i=i: MyTestEnv(size=i, sleep=sleep)
|
||||
lambda i=i: MyTestEnv(size=i, sleep=sleep, recurse_state=True)
|
||||
for i in range(size, size + num)
|
||||
]
|
||||
venv = [
|
||||
VectorEnv(env_fns),
|
||||
SubprocVectorEnv(env_fns),
|
||||
ShmemVectorEnv(env_fns),
|
||||
]
|
||||
if verbose:
|
||||
venv.append(RayVectorEnv(env_fns))
|
||||
for v in venv:
|
||||
v.seed()
|
||||
v.seed(0)
|
||||
action_list = [1] * 5 + [0] * 10 + [1] * 20
|
||||
if not verbose:
|
||||
o = [v.reset() for v in venv]
|
||||
@ -77,11 +96,13 @@ def test_vecenv(size=10, num=8, sleep=0.001):
|
||||
if sum(C):
|
||||
A = v.reset(np.where(C)[0])
|
||||
o.append([A, B, C, D])
|
||||
for i in zip(*o):
|
||||
for j in range(1, len(i) - 1):
|
||||
assert (i[0] == i[j]).all()
|
||||
for index, infos in enumerate(zip(*o)):
|
||||
if index == 3: # do not check info here
|
||||
continue
|
||||
for info in infos:
|
||||
assert recurse_comp(infos[0], info)
|
||||
else:
|
||||
t = [0, 0, 0]
|
||||
t = [0] * len(venv)
|
||||
for i, e in enumerate(venv):
|
||||
t[i] = time.time()
|
||||
e.reset()
|
||||
@ -90,9 +111,8 @@ def test_vecenv(size=10, num=8, sleep=0.001):
|
||||
if sum(done) > 0:
|
||||
e.reset(np.where(done)[0])
|
||||
t[i] = time.time() - t[i]
|
||||
print(f'VectorEnv: {t[0]:.6f}s')
|
||||
print(f'SubprocVectorEnv: {t[1]:.6f}s')
|
||||
print(f'RayVectorEnv: {t[2]:.6f}s')
|
||||
for i, v in enumerate(venv):
|
||||
print(f'{type(v)}: {t[i]:.6f}s')
|
||||
for v in venv:
|
||||
assert v.size == list(range(size, size + num))
|
||||
assert v.env_num == num
|
||||
|
2
tianshou/env/__init__.py
vendored
2
tianshou/env/__init__.py
vendored
@ -3,6 +3,7 @@ from tianshou.env.vecenv.dummy import VectorEnv
|
||||
from tianshou.env.vecenv.subproc import SubprocVectorEnv
|
||||
from tianshou.env.vecenv.asyncenv import AsyncVectorEnv
|
||||
from tianshou.env.vecenv.rayenv import RayVectorEnv
|
||||
from tianshou.env.vecenv.shmemenv import ShmemVectorEnv
|
||||
from tianshou.env.maenv import MultiAgentEnv
|
||||
|
||||
__all__ = [
|
||||
@ -11,5 +12,6 @@ __all__ = [
|
||||
'SubprocVectorEnv',
|
||||
'AsyncVectorEnv',
|
||||
'RayVectorEnv',
|
||||
'ShmemVectorEnv',
|
||||
'MultiAgentEnv',
|
||||
]
|
||||
|
177
tianshou/env/vecenv/shmemenv.py
vendored
Normal file
177
tianshou/env/vecenv/shmemenv.py
vendored
Normal file
@ -0,0 +1,177 @@
|
||||
import gym
|
||||
import ctypes
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
from multiprocessing import Pipe, Process, Array
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
|
||||
from tianshou.env import BaseVectorEnv, SubprocVectorEnv
|
||||
from tianshou.env.utils import CloudpickleWrapper
|
||||
|
||||
_NP_TO_CT = {np.bool: ctypes.c_bool,
|
||||
np.bool_: ctypes.c_bool,
|
||||
np.uint8: ctypes.c_uint8,
|
||||
np.uint16: ctypes.c_uint16,
|
||||
np.uint32: ctypes.c_uint32,
|
||||
np.uint64: ctypes.c_uint64,
|
||||
np.int8: ctypes.c_int8,
|
||||
np.int16: ctypes.c_int16,
|
||||
np.int32: ctypes.c_int32,
|
||||
np.int64: ctypes.c_int64,
|
||||
np.float32: ctypes.c_float,
|
||||
np.float64: ctypes.c_double}
|
||||
|
||||
|
||||
def _shmem_worker(parent, p, env_fn_wrapper, obs_bufs):
|
||||
"""Control a single environment instance using IPC and shared memory."""
|
||||
def _encode_obs(obs, buffer):
|
||||
if isinstance(obs, np.ndarray):
|
||||
buffer.save(obs)
|
||||
elif isinstance(obs, tuple):
|
||||
for o, b in zip(obs, buffer):
|
||||
_encode_obs(o, b)
|
||||
elif isinstance(obs, dict):
|
||||
for k in obs.keys():
|
||||
_encode_obs(obs[k], buffer[k])
|
||||
return None
|
||||
parent.close()
|
||||
env = env_fn_wrapper.data()
|
||||
try:
|
||||
while True:
|
||||
cmd, data = p.recv()
|
||||
if cmd == 'step':
|
||||
obs, reward, done, info = env.step(data)
|
||||
p.send((_encode_obs(obs, obs_bufs), reward, done, info))
|
||||
elif cmd == 'reset':
|
||||
p.send(_encode_obs(env.reset(), obs_bufs))
|
||||
elif cmd == 'close':
|
||||
p.send(env.close())
|
||||
p.close()
|
||||
break
|
||||
elif cmd == 'render':
|
||||
p.send(env.render(**data) if hasattr(env, 'render') else None)
|
||||
elif cmd == 'seed':
|
||||
p.send(env.seed(data) if hasattr(env, 'seed') else None)
|
||||
elif cmd == 'getattr':
|
||||
p.send(getattr(env, data) if hasattr(env, data) else None)
|
||||
else:
|
||||
p.close()
|
||||
raise NotImplementedError
|
||||
except KeyboardInterrupt:
|
||||
p.close()
|
||||
|
||||
|
||||
class ShArray:
|
||||
"""Wrapper of multiprocessing Array"""
|
||||
|
||||
def __init__(self, dtype, shape):
|
||||
self.arr = Array(_NP_TO_CT[dtype.type], int(np.prod(shape)))
|
||||
self.dtype = dtype
|
||||
self.shape = shape
|
||||
|
||||
def save(self, ndarray):
|
||||
assert isinstance(ndarray, np.ndarray)
|
||||
dst = self.arr.get_obj()
|
||||
dst_np = np.frombuffer(dst, dtype=self.dtype).reshape(self.shape)
|
||||
np.copyto(dst_np, ndarray)
|
||||
|
||||
def get(self):
|
||||
return np.frombuffer(self.arr.get_obj(),
|
||||
dtype=self.dtype).reshape(self.shape)
|
||||
|
||||
|
||||
class ShmemVectorEnv(SubprocVectorEnv):
|
||||
"""Optimized version of SubprocVectorEnv that uses shared variables to
|
||||
communicate observations. SubprocVectorEnv has exactly the same API as
|
||||
SubprocVectorEnv.
|
||||
|
||||
.. seealso::
|
||||
|
||||
Please refer to :class:`~tianshou.env.SubprocVectorEnv` for more
|
||||
detailed explanation.
|
||||
|
||||
ShmemVectorEnv Class was inspired by openai baseline's implementation.
|
||||
Please refer to 'https://github.com/openai/baselines/blob/master/baselines/
|
||||
common/vec_env/shmem_vec_env.py' for more info if you are interested.
|
||||
"""
|
||||
|
||||
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
||||
BaseVectorEnv.__init__(self, env_fns)
|
||||
# Mind that SubprocVectorEnv is not initialised.
|
||||
self.closed = False
|
||||
dummy = env_fns[0]()
|
||||
obs_space = dummy.observation_space
|
||||
dummy.close()
|
||||
del dummy
|
||||
self.obs_bufs = [ShmemVectorEnv._setup_buf(obs_space)
|
||||
for _ in range(self.env_num)]
|
||||
self.parent_remote, self.child_remote = \
|
||||
zip(*[Pipe() for _ in range(self.env_num)])
|
||||
self.processes = [
|
||||
Process(target=_shmem_worker, args=(
|
||||
parent, child, CloudpickleWrapper(env_fn),
|
||||
obs_buf), daemon=True)
|
||||
for (parent, child, env_fn, obs_buf) in zip(
|
||||
self.parent_remote, self.child_remote, env_fns, self.obs_bufs)
|
||||
]
|
||||
for p in self.processes:
|
||||
p.start()
|
||||
for c in self.child_remote:
|
||||
c.close()
|
||||
|
||||
def step(self,
|
||||
action: np.ndarray,
|
||||
id: Optional[Union[int, List[int]]] = None
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||||
if id is None:
|
||||
id = range(self.env_num)
|
||||
elif np.isscalar(id):
|
||||
id = [id]
|
||||
assert len(action) == len(id)
|
||||
for i, j in enumerate(id):
|
||||
self.parent_remote[j].send(['step', action[i]])
|
||||
result = []
|
||||
for i in id:
|
||||
obs, rew, done, info = self.parent_remote[i].recv()
|
||||
obs = self._decode_obs(obs, i)
|
||||
result.append((obs, rew, done, info))
|
||||
obs, rew, done, info = map(np.stack, zip(*result))
|
||||
return obs, rew, done, info
|
||||
|
||||
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
||||
if id is None:
|
||||
id = range(self.env_num)
|
||||
elif np.isscalar(id):
|
||||
id = [id]
|
||||
for i in id:
|
||||
self.parent_remote[i].send(['reset', None])
|
||||
obs = np.stack(
|
||||
[self._decode_obs(self.parent_remote[i].recv(), i) for i in id])
|
||||
return obs
|
||||
|
||||
@staticmethod
|
||||
def _setup_buf(space):
|
||||
if isinstance(space, gym.spaces.Dict):
|
||||
assert isinstance(space.spaces, OrderedDict)
|
||||
buffer = {k: ShmemVectorEnv._setup_buf(v)
|
||||
for k, v in space.spaces.items()}
|
||||
elif isinstance(space, gym.spaces.Tuple):
|
||||
assert isinstance(space.spaces, tuple)
|
||||
buffer = tuple([ShmemVectorEnv._setup_buf(t)
|
||||
for t in space.spaces])
|
||||
else:
|
||||
buffer = ShArray(space.dtype, space.shape)
|
||||
return buffer
|
||||
|
||||
def _decode_obs(self, isNone, index):
|
||||
def decode_obs(buffer):
|
||||
if isinstance(buffer, ShArray):
|
||||
return buffer.get()
|
||||
elif isinstance(buffer, tuple):
|
||||
return tuple([decode_obs(b) for b in buffer])
|
||||
elif isinstance(buffer, dict):
|
||||
return {k: decode_obs(v) for k, v in buffer.items()}
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return decode_obs(self.obs_bufs[index])
|
4
tianshou/env/vecenv/subproc.py
vendored
4
tianshou/env/vecenv/subproc.py
vendored
@ -7,7 +7,7 @@ from tianshou.env import BaseVectorEnv
|
||||
from tianshou.env.utils import CloudpickleWrapper
|
||||
|
||||
|
||||
def worker(parent, p, env_fn_wrapper):
|
||||
def _worker(parent, p, env_fn_wrapper):
|
||||
parent.close()
|
||||
env = env_fn_wrapper.data()
|
||||
try:
|
||||
@ -49,7 +49,7 @@ class SubprocVectorEnv(BaseVectorEnv):
|
||||
self.parent_remote, self.child_remote = \
|
||||
zip(*[Pipe() for _ in range(self.env_num)])
|
||||
self.processes = [
|
||||
Process(target=worker, args=(
|
||||
Process(target=_worker, args=(
|
||||
parent, child, CloudpickleWrapper(env_fn)), daemon=True)
|
||||
for (parent, child, env_fn) in zip(
|
||||
self.parent_remote, self.child_remote, env_fns)
|
||||
|
Loading…
x
Reference in New Issue
Block a user