Tianshou/test/base/test_collector.py
ChenDRAG f2bcc55a25
ShmemVectorEnv Implementation (#174)
* add shmem vecenv, some add&fix in test_env

* generalize test_env IO

* pep8 fix

* comment update

* style change

* pep8 fix

* style fix

* minor fix

* fix a bug

* test fix

* change env

* testenv bug fix& shmem support recurse dict

* bugfix

* pep8 fix

* _NP_TO_CT enhance

* doc update

* docstring update

* pep8 fix

* style change

* style fix

* remove assert

* minor

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-08-04 13:39:05 +08:00

238 lines
9.0 KiB
Python

import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import BasePolicy
from tianshou.env import VectorEnv, SubprocVectorEnv, AsyncVectorEnv
from tianshou.data import Collector, Batch, ReplayBuffer
if __name__ == '__main__':
from env import MyTestEnv
else: # pytest
from test.base.env import MyTestEnv
class MyPolicy(BasePolicy):
def __init__(self, dict_state=False):
super().__init__()
self.dict_state = dict_state
def forward(self, batch, state=None):
if self.dict_state:
return Batch(act=np.ones(len(batch.obs['index'])))
return Batch(act=np.ones(len(batch.obs)))
def learn(self):
pass
class Logger:
def __init__(self, writer):
self.cnt = 0
self.writer = writer
def preprocess_fn(self, **kwargs):
# modify info before adding into the buffer, and recorded into tfb
# if info is not provided from env, it will be a ``Batch()``.
if not kwargs.get('info', Batch()).is_empty():
n = len(kwargs['obs'])
info = kwargs['info']
for i in range(n):
info[i].update(rew=kwargs['rew'][i])
self.writer.add_scalar('key', np.mean(
info['key']), global_step=self.cnt)
self.cnt += 1
return Batch(info=info)
# or: return {'info': info}
else:
return Batch()
@staticmethod
def single_preprocess_fn(**kwargs):
# same as above, without tfb
if not kwargs.get('info', Batch()).is_empty():
n = len(kwargs['obs'])
info = kwargs['info']
for i in range(n):
info[i].update(rew=kwargs['rew'][i])
return Batch(info=info)
# or: return {'info': info}
else:
return Batch()
def test_collector():
writer = SummaryWriter('log/collector')
logger = Logger(writer)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0) for i in [2, 3, 4, 5]]
venv = SubprocVectorEnv(env_fns)
dum = VectorEnv(env_fns)
policy = MyPolicy()
env = env_fns[0]()
c0 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=False),
logger.preprocess_fn)
c0.collect(n_step=3)
assert np.allclose(c0.buffer.obs[:4], np.expand_dims(
[0, 1, 0, 1], axis=-1))
assert np.allclose(c0.buffer[:4].obs_next, np.expand_dims(
[1, 2, 1, 2], axis=-1))
c0.collect(n_episode=3)
assert np.allclose(c0.buffer.obs[:10], np.expand_dims(
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1], axis=-1))
assert np.allclose(c0.buffer[:10].obs_next, np.expand_dims(
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2], axis=-1))
c0.collect(n_step=3, random=True)
c1 = Collector(policy, venv, ReplayBuffer(size=100, ignore_obs_next=False),
logger.preprocess_fn)
c1.collect(n_step=6)
assert np.allclose(c1.buffer.obs[:11], np.expand_dims(
[0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3], axis=-1))
assert np.allclose(c1.buffer[:11].obs_next, np.expand_dims([
1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4], axis=-1))
c1.collect(n_episode=2)
assert np.allclose(c1.buffer.obs[11:21], np.expand_dims(
[0, 1, 2, 3, 4, 0, 1, 0, 1, 2], axis=-1))
assert np.allclose(c1.buffer[11:21].obs_next,
np.expand_dims([1, 2, 3, 4, 5, 1, 2, 1, 2, 3], axis=-1))
c1.collect(n_episode=3, random=True)
c2 = Collector(policy, dum, ReplayBuffer(size=100, ignore_obs_next=False),
logger.preprocess_fn)
c2.collect(n_episode=[1, 2, 2, 2])
assert np.allclose(c2.buffer.obs_next[:26], np.expand_dims([
1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5,
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5], axis=-1))
c2.reset_env()
c2.collect(n_episode=[2, 2, 2, 2])
assert np.allclose(c2.buffer.obs_next[26:54], np.expand_dims([
1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5,
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5], axis=-1))
c2.collect(n_episode=[1, 1, 1, 1], random=True)
def test_collector_with_async():
env_lens = [2, 3, 4, 5]
writer = SummaryWriter('log/async_collector')
logger = Logger(writer)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0.1, random_sleep=True)
for i in env_lens]
venv = AsyncVectorEnv(env_fns)
policy = MyPolicy()
c1 = Collector(policy, venv,
ReplayBuffer(size=1000, ignore_obs_next=False),
logger.preprocess_fn)
c1.collect(n_episode=10)
# check if the data in the buffer is chronological
# i.e. data in the buffer are full episodes, and each episode is
# returned by the same environment
env_id = c1.buffer.info['env_id']
size = len(c1.buffer)
obs = c1.buffer.obs[:size]
done = c1.buffer.done[:size]
print(env_id[:size])
print(obs)
obs_ground_truth = []
i = 0
while i < size:
# i is the start of an episode
if done[i]:
# this episode has one transition
assert env_lens[env_id[i]] == 1
i += 1
continue
j = i
while True:
j += 1
# in one episode, the environment id is the same
assert env_id[j] == env_id[i]
if done[j]:
break
j = j + 1 # j is the start of the next episode
assert j - i == env_lens[env_id[i]]
obs_ground_truth += list(range(j - i))
i = j
obs_ground_truth = np.expand_dims(
np.array(obs_ground_truth), axis=-1)
assert np.allclose(obs, obs_ground_truth)
def test_collector_with_dict_state():
env = MyTestEnv(size=5, sleep=0, dict_state=True)
policy = MyPolicy(dict_state=True)
c0 = Collector(policy, env, ReplayBuffer(size=100),
Logger.single_preprocess_fn)
c0.collect(n_step=3)
c0.collect(n_episode=2)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, dict_state=True)
for i in [2, 3, 4, 5]]
envs = VectorEnv(env_fns)
envs.seed(666)
obs = envs.reset()
assert not np.isclose(obs[0]['rand'], obs[1]['rand'])
c1 = Collector(policy, envs, ReplayBuffer(size=100),
Logger.single_preprocess_fn)
c1.seed(0)
c1.collect(n_step=10)
c1.collect(n_episode=[2, 1, 1, 2])
batch = c1.sample(10)
print(batch)
c0.buffer.update(c1.buffer)
assert np.allclose(c0.buffer[:len(c0.buffer)].obs.index, np.expand_dims([
0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1.,
0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0.,
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.], axis=-1))
c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4),
Logger.single_preprocess_fn)
c2.collect(n_episode=[0, 0, 0, 10])
batch = c2.sample(10)
print(batch['obs_next']['index'])
def test_collector_with_ma():
def reward_metric(x):
return x.sum()
env = MyTestEnv(size=5, sleep=0, ma_rew=4)
policy = MyPolicy()
c0 = Collector(policy, env, ReplayBuffer(size=100),
Logger.single_preprocess_fn, reward_metric=reward_metric)
# n_step=3 will collect a full episode
r = c0.collect(n_step=3)['rew']
assert np.asanyarray(r).size == 1 and r == 4.
r = c0.collect(n_episode=2)['rew']
assert np.asanyarray(r).size == 1 and r == 4.
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, ma_rew=4)
for i in [2, 3, 4, 5]]
envs = VectorEnv(env_fns)
c1 = Collector(policy, envs, ReplayBuffer(size=100),
Logger.single_preprocess_fn, reward_metric=reward_metric)
r = c1.collect(n_step=10)['rew']
assert np.asanyarray(r).size == 1 and r == 4.
r = c1.collect(n_episode=[2, 1, 1, 2])['rew']
assert np.asanyarray(r).size == 1 and r == 4.
batch = c1.sample(10)
print(batch)
c0.buffer.update(c1.buffer)
obs = np.array(np.expand_dims([
0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1.,
0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0.,
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.], axis=-1))
assert np.allclose(c0.buffer[:len(c0.buffer)].obs, obs)
rew = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1]
assert np.allclose(c0.buffer[:len(c0.buffer)].rew,
[[x] * 4 for x in rew])
c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4),
Logger.single_preprocess_fn, reward_metric=reward_metric)
r = c2.collect(n_episode=[0, 0, 0, 10])['rew']
assert np.asanyarray(r).size == 1 and r == 4.
batch = c2.sample(10)
print(batch['obs_next'])
if __name__ == '__main__':
test_collector()
test_collector_with_dict_state()
test_collector_with_ma()
test_collector_with_async()