Tianshou/test/pettingzoo/pistonball.py

193 lines
6.6 KiB
Python
Raw Normal View History

import argparse
import os
import warnings
from typing import List, Optional, Tuple
import gymnasium as gym
import numpy as np
import pettingzoo.butterfly.pistonball_v6 as pistonball_v6
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import BasePolicy, DQNPolicy, MultiAgentPolicyManager
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=2000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument(
'--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win'
)
parser.add_argument(
'--n-pistons',
type=int,
default=3,
help='Number of pistons(agents) in the env'
)
parser.add_argument('--n-step', type=int, default=100)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=3)
parser.add_argument('--step-per-epoch', type=int, default=500)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=100)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.0)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='no training, '
'watch the play of pre-trained models'
)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser()
return parser.parse_known_args()[0]
def get_env(args: argparse.Namespace = get_args()):
return PettingZooEnv(pistonball_v6.env(continuous=False, n_pistons=args.n_pistons))
def get_agents(
args: argparse.Namespace = get_args(),
agents: Optional[List[BasePolicy]] = None,
optims: Optional[List[torch.optim.Optimizer]] = None,
) -> Tuple[BasePolicy, List[torch.optim.Optimizer], List]:
env = get_env()
observation_space = env.observation_space['observation'] if isinstance(
env.observation_space, gym.spaces.Dict
) else env.observation_space
args.state_shape = observation_space.shape or observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if agents is None:
agents = []
optims = []
for _ in range(args.n_pistons):
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
agent = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq
)
agents.append(agent)
optims.append(optim)
policy = MultiAgentPolicyManager(agents, env)
return policy, optims, env.agents
def train_agent(
args: argparse.Namespace = get_args(),
agents: Optional[List[BasePolicy]] = None,
optims: Optional[List[torch.optim.Optimizer]] = None,
) -> Tuple[dict, BasePolicy]:
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
policy, optim, agents = get_agents(args, agents=agents, optims=optims)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, 'pistonball', 'dqn')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
pass
def stop_fn(mean_rewards):
return False
def train_fn(epoch, env_step):
[agent.set_eps(args.eps_train) for agent in policy.policies.values()]
def test_fn(epoch, env_step):
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
def reward_metric(rews):
return rews[:, 0]
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
update_per_step=args.update_per_step,
logger=logger,
test_in_train=False,
reward_metric=reward_metric
)
return result, policy
def watch(
args: argparse.Namespace = get_args(), policy: Optional[BasePolicy] = None
) -> None:
env = DummyVectorEnv([get_env])
if not policy:
warnings.warn(
"watching random agents, as loading pre-trained policies is "
"currently not supported"
)
policy, _, _ = get_agents(args)
policy.eval()
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
collector = Collector(policy, env, exploration_noise=True)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews[:, 0].mean()}, length: {lens.mean()}")