Tianshou/tianshou/utils/statistics.py

115 lines
3.6 KiB
Python
Raw Normal View History

from numbers import Number
2020-03-12 22:20:33 +08:00
import numpy as np
import torch
2020-03-12 22:20:33 +08:00
class MovAvg:
"""Class for moving average.
It will automatically exclude the infinity and NaN. Usage:
2020-04-03 21:28:12 +08:00
::
>>> stat = MovAvg(size=66)
>>> stat.add(torch.tensor(5))
5.0
>>> stat.add(float('inf')) # which will not add to stat
5.0
>>> stat.add([6, 7, 8])
6.5
>>> stat.get()
6.5
>>> print(f'{stat.mean():.2f}±{stat.std():.2f}')
6.50±1.12
"""
2020-05-12 11:31:47 +08:00
2020-05-16 20:08:32 +08:00
def __init__(self, size: int = 100) -> None:
2020-03-12 22:20:33 +08:00
super().__init__()
self.size = size
self.cache: list[np.number] = []
2020-04-23 22:06:18 +08:00
self.banned = [np.inf, np.nan, -np.inf]
2020-03-12 22:20:33 +08:00
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
def add(
self,
data_array: Number | float | np.number | list | np.ndarray | torch.Tensor,
) -> float:
"""Add a scalar into :class:`MovAvg`.
You can add ``torch.Tensor`` with only one element, a python scalar, or
a list of python scalar.
2020-04-03 21:28:12 +08:00
"""
if isinstance(data_array, torch.Tensor):
data_array = data_array.flatten().cpu().numpy()
if np.isscalar(data_array):
data_array = [data_array]
for number in data_array: # type: ignore
if number not in self.banned:
self.cache.append(number)
2020-03-12 22:20:33 +08:00
if self.size > 0 and len(self.cache) > self.size:
self.cache = self.cache[-self.size :]
2020-03-12 22:20:33 +08:00
return self.get()
def get(self) -> float:
2020-04-04 21:02:06 +08:00
"""Get the average."""
2020-03-12 22:20:33 +08:00
if len(self.cache) == 0:
return 0.0
return float(np.mean(self.cache)) # type: ignore
2020-03-15 17:41:00 +08:00
def mean(self) -> float:
2020-04-04 21:02:06 +08:00
"""Get the average. Same as :meth:`get`."""
2020-03-15 17:41:00 +08:00
return self.get()
def std(self) -> float:
2020-04-04 21:02:06 +08:00
"""Get the standard deviation."""
2020-03-15 17:41:00 +08:00
if len(self.cache) == 0:
return 0.0
return float(np.std(self.cache)) # type: ignore
class RunningMeanStd:
"""Calculates the running mean and std of a data stream.
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
:param mean: the initial mean estimation for data array. Default to 0.
:param std: the initial standard error estimation for data array. Default to 1.
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param clip_max: the maximum absolute value for data array. Default to
10.0.
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param epsilon: To avoid division by zero.
"""
def __init__(
self,
mean: float | np.ndarray = 0.0,
std: float | np.ndarray = 1.0,
clip_max: float | None = 10.0,
epsilon: float = np.finfo(np.float32).eps.item(),
) -> None:
self.mean, self.var = mean, std
self.clip_max = clip_max
self.count = 0
self.eps = epsilon
def norm(self, data_array: float | np.ndarray) -> float | np.ndarray:
data_array = (data_array - self.mean) / np.sqrt(self.var + self.eps)
if self.clip_max:
data_array = np.clip(data_array, -self.clip_max, self.clip_max)
return data_array
def update(self, data_array: np.ndarray) -> None:
"""Add a batch of item into RMS with the same shape, modify mean/var/count."""
batch_mean, batch_var = np.mean(data_array, axis=0), np.var(data_array, axis=0)
batch_count = len(data_array)
delta = batch_mean - self.mean
total_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / total_count
m_a = self.var * self.count
m_b = batch_var * batch_count
m_2 = m_a + m_b + delta**2 * self.count * batch_count / total_count
new_var = m_2 / total_count
self.mean, self.var = new_mean, new_var
self.count = total_count