Tianshou/test/base/env.py

214 lines
7.1 KiB
Python
Raw Normal View History

import random
import time
from copy import deepcopy
import gym
import networkx as nx
import numpy as np
from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
2020-03-21 10:58:01 +08:00
class MyTestEnv(gym.Env):
"""This is a "going right" task. The task is to go right ``size`` steps.
"""
def __init__(
self,
size,
sleep=0,
dict_state=False,
recurse_state=False,
ma_rew=0,
multidiscrete_action=False,
random_sleep=False,
array_state=False
):
assert dict_state + recurse_state + array_state <= 1, \
"dict_state / recurse_state / array_state can be only one true"
2020-03-21 10:58:01 +08:00
self.size = size
self.sleep = sleep
self.random_sleep = random_sleep
2020-04-28 20:56:02 +08:00
self.dict_state = dict_state
self.recurse_state = recurse_state
self.array_state = array_state
self.ma_rew = ma_rew
self._md_action = multidiscrete_action
# how many steps this env has stepped
self.steps = 0
if dict_state:
self.observation_space = Dict(
{
"index": Box(shape=(1, ), low=0, high=size - 1),
"rand": Box(shape=(1, ), low=0, high=1, dtype=np.float64)
}
)
elif recurse_state:
self.observation_space = Dict(
{
"index":
Box(shape=(1, ), low=0, high=size - 1),
"dict":
Dict(
{
"tuple":
Tuple(
(
Discrete(2),
Box(shape=(2, ), low=0, high=1, dtype=np.float64)
)
),
"rand":
Box(shape=(1, 2), low=0, high=1, dtype=np.float64)
}
)
}
)
elif array_state:
self.observation_space = Box(shape=(4, 84, 84), low=0, high=255)
else:
self.observation_space = Box(shape=(1, ), low=0, high=size - 1)
if multidiscrete_action:
self.action_space = MultiDiscrete([2, 2])
else:
self.action_space = Discrete(2)
self.terminated = False
self.index = 0
2020-03-21 10:58:01 +08:00
def reset(self, state=0, seed=None):
super().reset(seed=seed)
self.terminated = False
self.do_sleep()
self.index = state
return self._get_state(), {'key': 1, 'env': self}
def _get_reward(self):
"""Generate a non-scalar reward if ma_rew is True."""
end_flag = int(self.terminated)
if self.ma_rew > 0:
return [end_flag] * self.ma_rew
return end_flag
def _get_state(self):
"""Generate state(observation) of MyTestEnv"""
if self.dict_state:
return {
'index': np.array([self.index], dtype=np.float32),
'rand': self.np_random.random(1)
}
elif self.recurse_state:
return {
'index': np.array([self.index], dtype=np.float32),
'dict': {
"tuple": (np.array([1], dtype=int), self.np_random.random(2)),
"rand": self.np_random.random((1, 2))
}
}
elif self.array_state:
img = np.zeros([4, 84, 84], int)
img[3, np.arange(84), np.arange(84)] = self.index
img[2, np.arange(84)] = self.index
img[1, :, np.arange(84)] = self.index
img[0] = self.index
return img
else:
return np.array([self.index], dtype=np.float32)
2020-03-21 10:58:01 +08:00
def do_sleep(self):
if self.sleep > 0:
sleep_time = random.random() if self.random_sleep else 1
sleep_time *= self.sleep
time.sleep(sleep_time)
2020-03-21 10:58:01 +08:00
def step(self, action):
self.steps += 1
if self._md_action:
action = action[0]
if self.terminated:
2020-03-21 10:58:01 +08:00
raise ValueError('step after done !!!')
self.do_sleep()
2020-03-21 10:58:01 +08:00
if self.index == self.size:
self.terminated = True
return self._get_state(), self._get_reward(), self.terminated, False, {}
2020-03-21 10:58:01 +08:00
if action == 0:
self.index = max(self.index - 1, 0)
return self._get_state(), self._get_reward(), self.terminated, False, \
{'key': 1, 'env': self} if self.dict_state else {}
2020-03-21 10:58:01 +08:00
elif action == 1:
self.index += 1
self.terminated = self.index == self.size
return self._get_state(), self._get_reward(), \
self.terminated, False, {'key': 1, 'env': self}
class NXEnv(gym.Env):
def __init__(self, size, obs_type, feat_dim=32):
self.size = size
self.feat_dim = feat_dim
self.graph = nx.Graph()
self.graph.add_nodes_from(list(range(size)))
assert obs_type in ["array", "object"]
self.obs_type = obs_type
def _encode_obs(self):
if self.obs_type == "array":
return np.stack([v["data"] for v in self.graph._node.values()])
return deepcopy(self.graph)
def reset(self):
graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = graph_state[i]
return self._encode_obs(), {}
def step(self, action):
next_graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = next_graph_state[i]
return self._encode_obs(), 1.0, 0, 0, {}
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
class MyGoalEnv(MyTestEnv):
def __init__(self, *args, **kwargs):
assert kwargs.get("dict_state", 0) + kwargs.get("recurse_state", 0) == 0, \
"dict_state / recurse_state not supported"
super().__init__(*args, **kwargs)
obs, _ = super().reset(state=0)
obs, _, _, _, _ = super().step(1)
self._goal = obs * self.size
super_obsv = self.observation_space
self.observation_space = gym.spaces.Dict(
{
'observation': super_obsv,
'achieved_goal': super_obsv,
'desired_goal': super_obsv,
}
)
def reset(self, *args, **kwargs):
obs, info = super().reset(*args, **kwargs)
new_obs = {
'observation': obs,
'achieved_goal': obs,
'desired_goal': self._goal
}
return new_obs, info
def step(self, *args, **kwargs):
obs_next, rew, terminated, truncated, info = super().step(*args, **kwargs)
new_obs_next = {
'observation': obs_next,
'achieved_goal': obs_next,
'desired_goal': self._goal
}
return new_obs_next, rew, terminated, truncated, info
def compute_reward_fn(
self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info: dict
) -> np.ndarray:
axis = -1
if self.array_state:
axis = (-3, -2, -1)
return (achieved_goal == desired_goal).all(axis=axis)