141 lines
5.3 KiB
Python
Raw Normal View History

import argparse
import os
from typing import Callable, Optional, Tuple
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import BaseLogger, TensorboardLogger
from tianshou.utils.logger.base import LOG_DATA_TYPE
try:
import wandb
except ImportError:
pass
class WandbLogger(BaseLogger):
"""Weights and Biases logger that sends data to https://wandb.ai/.
This logger creates three panels with plots: train, test, and update.
Make sure to select the correct access for each panel in weights and biases:
Example of usage:
::
logger = WandbLogger()
logger.load(SummaryWriter(log_path))
result = onpolicy_trainer(policy, train_collector, test_collector,
logger=logger)
:param int train_interval: the log interval in log_train_data(). Default to 1000.
:param int test_interval: the log interval in log_test_data(). Default to 1.
:param int update_interval: the log interval in log_update_data().
Default to 1000.
:param str project: W&B project name. Default to "tianshou".
:param str name: W&B run name. Default to None. If None, random name is assigned.
:param str entity: W&B team/organization name. Default to None.
:param str run_id: run id of W&B run to be resumed. Default to None.
:param argparse.Namespace config: experiment configurations. Default to None.
"""
def __init__(
self,
train_interval: int = 1000,
test_interval: int = 1,
update_interval: int = 1000,
save_interval: int = 1000,
project: Optional[str] = None,
name: Optional[str] = None,
entity: Optional[str] = None,
run_id: Optional[str] = None,
config: Optional[argparse.Namespace] = None,
) -> None:
super().__init__(train_interval, test_interval, update_interval)
self.last_save_step = -1
self.save_interval = save_interval
self.restored = False
if project is None:
project = os.getenv("WANDB_PROJECT", "tianshou")
self.wandb_run = wandb.init(
project=project,
name=name,
id=run_id,
resume="allow",
entity=entity,
sync_tensorboard=True,
monitor_gym=True,
config=config, # type: ignore
) if not wandb.run else wandb.run
self.wandb_run._label(repo="tianshou") # type: ignore
self.tensorboard_logger: Optional[TensorboardLogger] = None
def load(self, writer: SummaryWriter) -> None:
self.writer = writer
self.tensorboard_logger = TensorboardLogger(writer)
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
if self.tensorboard_logger is None:
raise Exception(
"`logger` needs to load the Tensorboard Writer before "
"writing data. Try `logger.load(SummaryWriter(log_path))`"
)
else:
self.tensorboard_logger.write(step_type, step, data)
def save_data(
self,
epoch: int,
env_step: int,
gradient_step: int,
save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None,
) -> None:
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
:param int epoch: the epoch in trainer.
:param int env_step: the env_step in trainer.
:param int gradient_step: the gradient_step in trainer.
:param function save_checkpoint_fn: a hook defined by user, see trainer
documentation for detail.
"""
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
self.last_save_step = epoch
checkpoint_path = save_checkpoint_fn(epoch, env_step, gradient_step)
checkpoint_artifact = wandb.Artifact(
'run_' + self.wandb_run.id + '_checkpoint', # type: ignore
type='model',
metadata={
"save/epoch": epoch,
"save/env_step": env_step,
"save/gradient_step": gradient_step,
"checkpoint_path": str(checkpoint_path)
}
)
checkpoint_artifact.add_file(str(checkpoint_path))
self.wandb_run.log_artifact(checkpoint_artifact) # type: ignore
def restore_data(self) -> Tuple[int, int, int]:
checkpoint_artifact = self.wandb_run.use_artifact( # type: ignore
'run_' + self.wandb_run.id + '_checkpoint:latest' # type: ignore
)
assert checkpoint_artifact is not None, "W&B dataset artifact doesn't exist"
checkpoint_artifact.download(
os.path.dirname(checkpoint_artifact.metadata['checkpoint_path'])
)
try: # epoch / gradient_step
epoch = checkpoint_artifact.metadata["save/epoch"]
self.last_save_step = self.last_log_test_step = epoch
gradient_step = checkpoint_artifact.metadata["save/gradient_step"]
self.last_log_update_step = gradient_step
except KeyError:
epoch, gradient_step = 0, 0
try: # offline trainer doesn't have env_step
env_step = checkpoint_artifact.metadata["save/env_step"]
self.last_log_train_step = env_step
except KeyError:
env_step = 0
return epoch, env_step, gradient_step