Costa Huang df3d7f582b
Update WandbLogger implementation (#558)
* Use `global_step` as the x-axis for wandb
* Use Tensorboard SummaryWritter as core with `wandb.init(..., sync_tensorboard=True)`
* Update all atari examples with wandb

Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-03-07 06:40:47 +08:00

141 lines
5.3 KiB
Python

import argparse
import os
from typing import Callable, Optional, Tuple
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import BaseLogger, TensorboardLogger
from tianshou.utils.logger.base import LOG_DATA_TYPE
try:
import wandb
except ImportError:
pass
class WandbLogger(BaseLogger):
"""Weights and Biases logger that sends data to https://wandb.ai/.
This logger creates three panels with plots: train, test, and update.
Make sure to select the correct access for each panel in weights and biases:
Example of usage:
::
logger = WandbLogger()
logger.load(SummaryWriter(log_path))
result = onpolicy_trainer(policy, train_collector, test_collector,
logger=logger)
:param int train_interval: the log interval in log_train_data(). Default to 1000.
:param int test_interval: the log interval in log_test_data(). Default to 1.
:param int update_interval: the log interval in log_update_data().
Default to 1000.
:param str project: W&B project name. Default to "tianshou".
:param str name: W&B run name. Default to None. If None, random name is assigned.
:param str entity: W&B team/organization name. Default to None.
:param str run_id: run id of W&B run to be resumed. Default to None.
:param argparse.Namespace config: experiment configurations. Default to None.
"""
def __init__(
self,
train_interval: int = 1000,
test_interval: int = 1,
update_interval: int = 1000,
save_interval: int = 1000,
project: Optional[str] = None,
name: Optional[str] = None,
entity: Optional[str] = None,
run_id: Optional[str] = None,
config: Optional[argparse.Namespace] = None,
) -> None:
super().__init__(train_interval, test_interval, update_interval)
self.last_save_step = -1
self.save_interval = save_interval
self.restored = False
if project is None:
project = os.getenv("WANDB_PROJECT", "tianshou")
self.wandb_run = wandb.init(
project=project,
name=name,
id=run_id,
resume="allow",
entity=entity,
sync_tensorboard=True,
monitor_gym=True,
config=config, # type: ignore
) if not wandb.run else wandb.run
self.wandb_run._label(repo="tianshou") # type: ignore
self.tensorboard_logger: Optional[TensorboardLogger] = None
def load(self, writer: SummaryWriter) -> None:
self.writer = writer
self.tensorboard_logger = TensorboardLogger(writer)
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
if self.tensorboard_logger is None:
raise Exception(
"`logger` needs to load the Tensorboard Writer before "
"writing data. Try `logger.load(SummaryWriter(log_path))`"
)
else:
self.tensorboard_logger.write(step_type, step, data)
def save_data(
self,
epoch: int,
env_step: int,
gradient_step: int,
save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None,
) -> None:
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
:param int epoch: the epoch in trainer.
:param int env_step: the env_step in trainer.
:param int gradient_step: the gradient_step in trainer.
:param function save_checkpoint_fn: a hook defined by user, see trainer
documentation for detail.
"""
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
self.last_save_step = epoch
checkpoint_path = save_checkpoint_fn(epoch, env_step, gradient_step)
checkpoint_artifact = wandb.Artifact(
'run_' + self.wandb_run.id + '_checkpoint', # type: ignore
type='model',
metadata={
"save/epoch": epoch,
"save/env_step": env_step,
"save/gradient_step": gradient_step,
"checkpoint_path": str(checkpoint_path)
}
)
checkpoint_artifact.add_file(str(checkpoint_path))
self.wandb_run.log_artifact(checkpoint_artifact) # type: ignore
def restore_data(self) -> Tuple[int, int, int]:
checkpoint_artifact = self.wandb_run.use_artifact( # type: ignore
'run_' + self.wandb_run.id + '_checkpoint:latest' # type: ignore
)
assert checkpoint_artifact is not None, "W&B dataset artifact doesn't exist"
checkpoint_artifact.download(
os.path.dirname(checkpoint_artifact.metadata['checkpoint_path'])
)
try: # epoch / gradient_step
epoch = checkpoint_artifact.metadata["save/epoch"]
self.last_save_step = self.last_log_test_step = epoch
gradient_step = checkpoint_artifact.metadata["save/gradient_step"]
self.last_log_update_step = gradient_step
except KeyError:
epoch, gradient_step = 0, 0
try: # offline trainer doesn't have env_step
env_step = checkpoint_artifact.metadata["save/env_step"]
self.last_log_train_step = env_step
except KeyError:
env_step = 0
return epoch, env_step, gradient_step