Tianshou/test/test_dqn.py

160 lines
6.4 KiB
Python
Raw Normal View History

2020-03-15 17:41:00 +08:00
import gym
2020-03-16 11:11:29 +08:00
import time
2020-03-15 17:41:00 +08:00
import tqdm
import torch
import argparse
import numpy as np
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils import tqdm_config, MovAvg
from tianshou.data import Collector, ReplayBuffer
class Net(nn.Module):
2020-03-16 15:04:58 +08:00
def __init__(self, layer_num, state_shape, action_shape, device='cpu'):
2020-03-15 17:41:00 +08:00
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
def forward(self, s, **kwargs):
2020-03-17 11:37:31 +08:00
s = torch.tensor(s, device=self.device, dtype=torch.float)
2020-03-15 17:41:00 +08:00
batch = s.shape[0]
q = self.model(s.view(batch, -1))
return q, None
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2020-03-16 11:11:29 +08:00
parser.add_argument('--seed', type=int, default=1626)
2020-03-15 17:41:00 +08:00
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
2020-03-17 15:16:30 +08:00
parser.add_argument('--lr', type=float, default=3e-4)
2020-03-15 17:41:00 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=320)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
2020-03-17 15:16:30 +08:00
parser.add_argument('--test-num', type=int, default=100)
2020-03-15 17:41:00 +08:00
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2020-03-17 11:37:31 +08:00
# train_envs = gym.make(args.task)
2020-03-15 17:41:00 +08:00
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
2020-03-16 11:11:29 +08:00
# test_envs = gym.make(args.task)
2020-03-15 17:41:00 +08:00
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
net = net.to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
loss = nn.MSELoss()
policy = DQNPolicy(net, optim, loss, args.gamma, args.n_step)
# collector
training_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(
policy, test_envs, ReplayBuffer(args.buffer_size), args.test_num)
training_collector.collect(n_step=args.batch_size)
# log
stat_loss = MovAvg()
global_step = 0
writer = SummaryWriter(args.logdir)
best_epoch = -1
best_reward = -1e10
2020-03-16 15:04:58 +08:00
start_time = time.time()
for epoch in range(1, 1 + args.epoch):
desc = f"Epoch #{epoch}"
2020-03-15 17:41:00 +08:00
# train
policy.train()
policy.sync_weight()
policy.set_eps(args.eps_train)
2020-03-17 15:16:30 +08:00
with tqdm.tqdm(
total=args.step_per_epoch, desc=desc, **tqdm_config) as t:
while t.n < t.total:
2020-03-16 15:04:58 +08:00
result = training_collector.collect(
n_step=args.collect_per_step)
2020-03-17 15:16:30 +08:00
for i in range(min(
result['n_step'] // args.collect_per_step,
t.total - t.n)):
t.update(1)
global_step += 1
loss = policy.learn(
training_collector.sample(args.batch_size))
stat_loss.add(loss)
writer.add_scalar(
'reward', result['reward'], global_step=global_step)
writer.add_scalar(
'length', result['length'], global_step=global_step)
writer.add_scalar(
'loss', stat_loss.get(), global_step=global_step)
writer.add_scalar(
'speed', result['speed'], global_step=global_step)
t.set_postfix(loss=f'{stat_loss.get():.6f}',
reward=f'{result["reward"]:.6f}',
length=f'{result["length"]:.2f}',
speed=f'{result["speed"]:.2f}')
2020-03-15 17:41:00 +08:00
# eval
test_collector.reset_env()
test_collector.reset_buffer()
policy.eval()
policy.set_eps(args.eps_test)
2020-03-16 15:04:58 +08:00
result = test_collector.collect(n_episode=args.test_num)
2020-03-15 17:41:00 +08:00
if best_reward < result['reward']:
best_reward = result['reward']
best_epoch = epoch
2020-03-16 15:04:58 +08:00
print(f'Epoch #{epoch}: test_reward: {result["reward"]:.6f}, '
2020-03-15 17:41:00 +08:00
f'best_reward: {best_reward:.6f} in #{best_epoch}')
2020-03-17 11:37:31 +08:00
if best_reward >= env.spec.reward_threshold:
2020-03-15 17:41:00 +08:00
break
2020-03-17 11:37:31 +08:00
assert best_reward >= env.spec.reward_threshold
training_collector.close()
test_collector.close()
2020-03-16 11:11:29 +08:00
if __name__ == '__main__':
2020-03-16 15:04:58 +08:00
train_cnt = training_collector.collect_step
test_cnt = test_collector.collect_step
duration = time.time() - start_time
print(f'Collect {train_cnt} training frame and {test_cnt} test frame '
f'in {duration:.2f}s, '
f'speed: {(train_cnt + test_cnt) / duration:.2f}it/s')
# Let's watch its performance!
2020-03-16 11:11:29 +08:00
env = gym.make(args.task)
2020-03-17 15:16:30 +08:00
test_collector = Collector(policy, env)
2020-03-17 11:37:31 +08:00
result = test_collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["reward"]}, length: {result["length"]}')
test_collector.close()
2020-03-15 17:41:00 +08:00
if __name__ == '__main__':
test_dqn(get_args())