Tianshou/test/discrete/test_pg.py

136 lines
4.6 KiB
Python
Raw Normal View History

import argparse
2020-04-11 16:54:27 +08:00
import os
2020-03-20 19:52:29 +08:00
import pprint
import gymnasium as gym
2020-03-17 11:37:31 +08:00
import numpy as np
import torch
2020-03-17 11:37:31 +08:00
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
2020-04-03 21:28:12 +08:00
from tianshou.policy import PGPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
2020-03-17 11:37:31 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2022-03-04 03:35:39 +01:00
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=1)
2020-03-17 11:37:31 +08:00
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.95)
2020-04-14 21:11:06 +08:00
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=40000)
parser.add_argument('--episode-per-collect', type=int, default=8)
2020-03-20 19:52:29 +08:00
parser.add_argument('--repeat-per-collect', type=int, default=2)
2020-03-17 11:37:31 +08:00
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
2020-03-17 11:37:31 +08:00
parser.add_argument('--training-num', type=int, default=8)
2020-03-17 15:16:30 +08:00
parser.add_argument('--test-num', type=int, default=100)
2020-03-17 11:37:31 +08:00
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
2020-06-03 13:59:47 +08:00
parser.add_argument('--rew-norm', type=int, default=1)
2020-03-17 11:37:31 +08:00
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
2020-03-17 11:37:31 +08:00
args = parser.parse_known_args()[0]
return args
def test_pg(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2022-03-04 03:35:39 +01:00
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
2020-03-17 11:37:31 +08:00
# train_envs = gym.make(args.task)
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
2020-03-17 11:37:31 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
2020-03-17 11:37:31 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=True
).to(args.device)
2020-03-17 11:37:31 +08:00
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = PGPolicy(
net,
optim,
dist,
args.gamma,
reward_normalization=args.rew_norm,
action_space=env.action_space,
)
for m in net.modules():
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
2020-03-17 11:37:31 +08:00
# collector
2020-03-19 17:23:46 +08:00
train_collector = Collector(
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
)
2020-03-23 11:34:52 +08:00
test_collector = Collector(policy, test_envs)
2020-03-17 11:37:31 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'pg')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
2020-04-11 16:54:27 +08:00
def save_best_fn(policy):
2020-04-11 16:54:27 +08:00
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
2020-03-19 17:23:46 +08:00
def stop_fn(mean_rewards):
2022-03-04 03:35:39 +01:00
return mean_rewards >= args.reward_threshold
2020-03-19 17:23:46 +08:00
# trainer
2020-03-20 19:52:29 +08:00
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
)
2020-03-20 19:52:29 +08:00
assert stop_fn(result['best_reward'])
2020-03-17 11:37:31 +08:00
if __name__ == '__main__':
2020-03-20 19:52:29 +08:00
pprint.pprint(result)
2020-03-17 11:37:31 +08:00
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-03-17 11:37:31 +08:00
if __name__ == '__main__':
test_pg()