Tianshou/tianshou/trainer/onpolicy.py

196 lines
9.2 KiB
Python
Raw Normal View History

2020-03-19 17:23:46 +08:00
import time
from collections import defaultdict
from typing import Callable, Dict, Optional, Union
import numpy as np
import tqdm
2020-03-19 17:23:46 +08:00
2020-05-12 11:31:47 +08:00
from tianshou.data import Collector
from tianshou.policy import BasePolicy
from tianshou.trainer import gather_info, test_episode
from tianshou.utils import BaseLogger, LazyLogger, MovAvg, tqdm_config
2020-03-19 17:23:46 +08:00
2020-05-12 11:31:47 +08:00
def onpolicy_trainer(
policy: BasePolicy,
train_collector: Collector,
test_collector: Collector,
max_epoch: int,
step_per_epoch: int,
repeat_per_collect: int,
episode_per_test: int,
batch_size: int,
step_per_collect: Optional[int] = None,
episode_per_collect: Optional[int] = None,
train_fn: Optional[Callable[[int, int], None]] = None,
test_fn: Optional[Callable[[int, Optional[int]], None]] = None,
stop_fn: Optional[Callable[[float], bool]] = None,
save_fn: Optional[Callable[[BasePolicy], None]] = None,
save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None,
resume_from_log: bool = False,
reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None,
logger: BaseLogger = LazyLogger(),
verbose: bool = True,
test_in_train: bool = True,
2020-05-12 11:31:47 +08:00
) -> Dict[str, Union[float, str]]:
"""A wrapper for on-policy trainer procedure.
The "step" in trainer means an environment step (a.k.a. transition).
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class.
:param Collector train_collector: the collector used for training.
:param Collector test_collector: the collector used for testing.
:param int max_epoch: the maximum number of epochs for training. The training
process might be finished before reaching ``max_epoch`` if ``stop_fn`` is set.
:param int step_per_epoch: the number of transitions collected per epoch.
:param int repeat_per_collect: the number of repeat time for policy learning, for
example, set it to 2 means the policy needs to learn each given batch data
twice.
:param int episode_per_test: the number of episodes for one policy evaluation.
:param int batch_size: the batch size of sample data, which is going to feed in the
policy network.
:param int step_per_collect: the number of transitions the collector would collect
before the network update, i.e., trainer will collect "step_per_collect"
transitions and do some policy network update repeatedly in each epoch.
:param int episode_per_collect: the number of episodes the collector would collect
before the network update, i.e., trainer will collect "episode_per_collect"
episodes and do some policy network update repeatedly in each epoch.
:param function train_fn: a hook called at the beginning of training in each epoch.
It can be used to perform custom additional operations, with the signature ``f(
num_epoch: int, step_idx: int) -> None``.
:param function test_fn: a hook called at the beginning of testing in each epoch.
It can be used to perform custom additional operations, with the signature ``f(
num_epoch: int, step_idx: int) -> None``.
:param function save_fn: a hook called when the undiscounted average mean reward in
evaluation phase gets better, with the signature ``f(policy: BasePolicy) ->
None``.
:param function save_checkpoint_fn: a function to save training process, with the
signature ``f(epoch: int, env_step: int, gradient_step: int) -> None``; you can
save whatever you want.
:param bool resume_from_log: resume env_step/gradient_step and other metadata from
existing tensorboard log. Default to False.
:param function stop_fn: a function with signature ``f(mean_rewards: float) ->
bool``, receives the average undiscounted returns of the testing result,
returns a boolean which indicates whether reaching the goal.
:param function reward_metric: a function with signature ``f(rewards: np.ndarray
with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``,
used in multi-agent RL. We need to return a single scalar for each episode's
result to monitor training in the multi-agent RL setting. This function
specifies what is the desired metric, e.g., the reward of agent 1 or the
average reward over all agents.
:param BaseLogger logger: A logger that logs statistics during
training/testing/updating. Default to a logger that doesn't log anything.
:param bool verbose: whether to print the information. Default to True.
:param bool test_in_train: whether to test in the training phase. Default to True.
:return: See :func:`~tianshou.trainer.gather_info`.
.. note::
Only either one of step_per_collect and episode_per_collect can be specified.
"""
start_epoch, env_step, gradient_step = 0, 0, 0
if resume_from_log:
start_epoch, env_step, gradient_step = logger.restore_data()
last_rew, last_len = 0.0, 0
stat: Dict[str, MovAvg] = defaultdict(MovAvg)
2020-03-19 17:23:46 +08:00
start_time = time.time()
train_collector.reset_stat()
test_collector.reset_stat()
Add multi-agent example: tic-tac-toe (#122) * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00
test_in_train = test_in_train and train_collector.policy == policy
test_result = test_episode(
policy, test_collector, test_fn, start_epoch, episode_per_test, logger,
env_step, reward_metric
)
best_epoch = start_epoch
best_reward, best_reward_std = test_result["rew"], test_result["rew_std"]
if save_fn:
save_fn(policy)
for epoch in range(1 + start_epoch, 1 + max_epoch):
# train
policy.train()
with tqdm.tqdm(
total=step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config
) as t:
2020-03-19 17:23:46 +08:00
while t.n < t.total:
if train_fn:
train_fn(epoch, env_step)
result = train_collector.collect(
n_step=step_per_collect, n_episode=episode_per_collect
)
if result["n/ep"] > 0 and reward_metric:
rew = reward_metric(result["rews"])
result.update(rews=rew, rew=rew.mean(), rew_std=rew.std())
env_step += int(result["n/st"])
t.update(result["n/st"])
logger.log_train_data(result, env_step)
last_rew = result['rew'] if 'rew' in result else last_rew
last_len = result['len'] if 'len' in result else last_len
data = {
"env_step": str(env_step),
"rew": f"{last_rew:.2f}",
"len": str(int(last_len)),
"n/ep": str(int(result["n/ep"])),
"n/st": str(int(result["n/st"])),
}
if result["n/ep"] > 0:
if test_in_train and stop_fn and stop_fn(result["rew"]):
test_result = test_episode(
policy, test_collector, test_fn, epoch, episode_per_test,
logger, env_step
)
if stop_fn(test_result["rew"]):
if save_fn:
save_fn(policy)
logger.save_data(
epoch, env_step, gradient_step, save_checkpoint_fn
)
t.set_postfix(**data)
return gather_info(
start_time, train_collector, test_collector,
test_result["rew"], test_result["rew_std"]
)
else:
policy.train()
losses = policy.update(
0,
train_collector.buffer,
batch_size=batch_size,
repeat=repeat_per_collect
)
train_collector.reset_buffer(keep_statistics=True)
step = max(
[1] + [len(v) for v in losses.values() if isinstance(v, list)]
)
gradient_step += step
2020-03-19 17:23:46 +08:00
for k in losses.keys():
stat[k].add(losses[k])
losses[k] = stat[k].get()
data[k] = f"{losses[k]:.3f}"
logger.log_update_data(losses, gradient_step)
2020-03-19 17:23:46 +08:00
t.set_postfix(**data)
if t.n <= t.total:
t.update()
2020-03-20 19:52:29 +08:00
# test
test_result = test_episode(
policy, test_collector, test_fn, epoch, episode_per_test, logger, env_step,
reward_metric
)
rew, rew_std = test_result["rew"], test_result["rew_std"]
if best_epoch < 0 or best_reward < rew:
best_epoch, best_reward, best_reward_std = epoch, rew, rew_std
2020-04-11 16:54:27 +08:00
if save_fn:
save_fn(policy)
logger.save_data(epoch, env_step, gradient_step, save_checkpoint_fn)
2020-03-19 17:23:46 +08:00
if verbose:
print(
f"Epoch #{epoch}: test_reward: {rew:.6f} ± {rew_std:.6f}, best_rew"
f"ard: {best_reward:.6f} ± {best_reward_std:.6f} in #{best_epoch}"
)
2020-03-20 19:52:29 +08:00
if stop_fn and stop_fn(best_reward):
2020-03-19 17:23:46 +08:00
break
return gather_info(
start_time, train_collector, test_collector, best_reward, best_reward_std
)