207 lines
8.2 KiB
Python
Raw Normal View History

2017-11-16 13:21:27 +08:00
import numpy as np
import math
2017-11-16 17:05:54 +08:00
import time
import sys
import collections
2017-11-16 13:21:27 +08:00
2017-11-21 22:19:52 +08:00
c_puct = 5
2017-11-26 13:36:52 +08:00
2017-12-27 14:08:34 +08:00
def hashable_conversion(obj):
if isinstance(obj, collections.Hashable):
return obj
else:
2017-12-27 14:08:34 +08:00
return tuple(hashable_conversion(sub) for sub in obj)
2017-11-26 13:36:52 +08:00
2017-11-16 17:05:54 +08:00
class MCTSNode(object):
2017-11-26 13:36:52 +08:00
def __init__(self, parent, action, state, action_num, prior, inverse=False):
2017-11-16 13:21:27 +08:00
self.parent = parent
self.action = action
self.children = {}
self.state = state
self.action_num = action_num
2017-12-05 23:17:20 +08:00
self.prior = np.array(prior).reshape(-1)
2017-11-26 13:36:52 +08:00
self.inverse = inverse
2017-11-16 13:21:27 +08:00
2017-11-21 22:19:52 +08:00
def selection(self, simulator):
2017-11-16 17:05:54 +08:00
raise NotImplementedError("Need to implement function selection")
2017-11-16 13:21:27 +08:00
2017-11-21 22:19:52 +08:00
def backpropagation(self, action):
2017-11-16 17:05:54 +08:00
raise NotImplementedError("Need to implement function backpropagation")
2017-11-16 13:21:27 +08:00
2017-12-05 23:17:20 +08:00
def valid_mask(self, simulator):
pass
2017-11-16 13:21:27 +08:00
class UCTNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, mcts, inverse=False):
2017-11-26 13:36:52 +08:00
super(UCTNode, self).__init__(parent, action, state, action_num, prior, inverse)
2017-11-16 13:21:27 +08:00
self.Q = np.zeros([action_num])
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
2017-12-23 02:48:53 +08:00
self.c_puct = c_puct
self.ucb = self.Q + self.c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
2017-12-08 23:41:31 +08:00
self.mask = None
2017-12-24 01:07:46 +08:00
self.elapse_time = 0
self.mcts = mcts
2017-11-16 13:21:27 +08:00
2017-11-21 22:19:52 +08:00
def selection(self, simulator):
2017-12-24 01:07:46 +08:00
head = time.time()
2017-12-05 23:17:20 +08:00
self.valid_mask(simulator)
self.mcts.valid_mask_time += time.time() - head
2017-11-21 22:19:52 +08:00
action = np.argmax(self.ucb)
if action in self.children.keys():
self.mcts.state_selection_time += time.time() - head
2017-11-21 22:19:52 +08:00
return self.children[action].selection(simulator)
2017-11-16 13:21:27 +08:00
else:
self.children[action] = ActionNode(self, action, mcts=self.mcts)
self.mcts.state_selection_time += time.time() - head
2017-11-21 22:19:52 +08:00
return self.children[action].selection(simulator)
def backpropagation(self, action):
2017-11-21 22:52:17 +08:00
action = int(action)
2017-11-21 22:19:52 +08:00
self.N[action] += 1
self.W[action] += self.children[action].reward
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.) / self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1.)
if self.parent is not None:
2017-11-26 13:36:52 +08:00
if self.inverse:
self.parent.backpropagation(-self.children[action].reward)
else:
self.parent.backpropagation(self.children[action].reward)
2017-11-16 17:05:54 +08:00
2017-12-05 23:17:20 +08:00
def valid_mask(self, simulator):
# let all invalid actions be illegal in mcts
if not hasattr(simulator, 'simulate_get_mask'):
pass
else:
if self.mask is None:
self.mask = simulator.simulate_get_mask(self.state, range(self.action_num))
self.ucb[self.mask] = -float("Inf")
2017-12-05 23:17:20 +08:00
2017-12-27 14:08:34 +08:00
# Code reserved for Thompson Sampling
2017-11-16 13:21:27 +08:00
class TSNode(MCTSNode):
2017-11-26 13:36:52 +08:00
def __init__(self, parent, action, state, action_num, prior, method="Gaussian", inverse=False):
super(TSNode, self).__init__(parent, action, state, action_num, prior, inverse)
2017-11-16 13:21:27 +08:00
if method == "Beta":
self.alpha = np.ones([action_num])
self.beta = np.ones([action_num])
if method == "Gaussian":
self.mu = np.zeros([action_num])
self.sigma = np.zeros([action_num])
2017-11-16 17:05:54 +08:00
2017-12-05 23:17:20 +08:00
class ActionNode(object):
def __init__(self, parent, action, mcts):
2017-11-16 13:21:27 +08:00
self.parent = parent
self.action = action
self.children = {}
2017-11-21 22:19:52 +08:00
self.next_state = None
2017-12-27 14:08:34 +08:00
self.next_state_hashable = None
2017-11-26 13:36:52 +08:00
self.state_type = None
2017-11-21 22:19:52 +08:00
self.reward = 0
self.mcts = mcts
2017-11-21 22:19:52 +08:00
def selection(self, simulator):
head = time.time()
self.next_state, self.reward = simulator.simulate_step_forward(self.parent.state, self.action)
self.mcts.simulate_sf_time += time.time() - head
if self.next_state is None: # next_state is None means that self.parent.state is the terminate state
self.mcts.action_selection_time += time.time() - head
return self.parent, self.action
2017-12-27 14:08:34 +08:00
self.next_state_hashable = hashable_conversion(self.next_state)
if self.next_state_hashable in self.children.keys(): # next state has already visited before
self.mcts.action_selection_time += time.time() - head
2017-12-27 14:08:34 +08:00
return self.children[self.next_state_hashable].selection(simulator)
else: # next state is a new state never seen before
self.mcts.action_selection_time += time.time() - head
2017-11-21 22:19:52 +08:00
return self.parent, self.action
2017-11-26 13:36:52 +08:00
def expansion(self, evaluator, action_num):
2017-11-21 22:19:52 +08:00
if self.next_state is not None:
2017-12-27 14:08:34 +08:00
# note that self.next_state was assigned already at the selection function
2017-11-26 13:36:52 +08:00
prior, value = evaluator(self.next_state)
2017-12-27 14:08:34 +08:00
self.children[self.next_state_hashable] = UCTNode(self, self.action, self.next_state, action_num, prior,
mcts=self.mcts, inverse=self.parent.inverse)
2017-11-26 13:36:52 +08:00
return value
2017-12-27 14:08:34 +08:00
else: # self.next_state is None means MCTS selected a terminate node
2017-12-05 23:17:20 +08:00
return 0.
2017-11-21 22:19:52 +08:00
def backpropagation(self, value):
self.reward += value
self.parent.backpropagation(self.action)
2017-11-16 17:05:54 +08:00
2017-12-05 23:17:20 +08:00
class MCTS(object):
def __init__(self, simulator, evaluator, start_state, action_num, method="UCT",
2017-12-24 01:07:46 +08:00
role="unknown", debug=False, inverse=False):
2017-11-16 17:05:54 +08:00
self.simulator = simulator
self.evaluator = evaluator
2017-12-24 01:07:46 +08:00
self.role = role
self.debug = debug
prior, _ = self.evaluator(start_state)
2017-11-21 22:19:52 +08:00
self.action_num = action_num
2017-12-03 19:16:21 +08:00
if method == "":
self.root = start_state
2017-11-16 17:05:54 +08:00
if method == "UCT":
self.root = UCTNode(None, None, start_state, action_num, prior, mcts=self, inverse=inverse)
2017-11-16 17:05:54 +08:00
if method == "TS":
self.root = TSNode(None, None, start_state, action_num, prior, inverse=inverse)
2017-11-26 13:36:52 +08:00
self.inverse = inverse
2017-12-20 16:43:42 +08:00
# time spend on each step
self.selection_time = 0
self.expansion_time = 0
self.backpropagation_time = 0
self.action_selection_time = 0
self.state_selection_time = 0
self.simulate_sf_time = 0
self.valid_mask_time = 0
self.ndarray2list_time = 0
self.list2tuple_time = 0
self.check = 0
2017-12-20 16:43:42 +08:00
def search(self, max_step=None, max_time=None):
step = 0
start_time = time.time()
if max_step is None:
max_step = int("Inf")
if max_time is None:
max_time = float("Inf")
2017-11-16 17:05:54 +08:00
if max_step is None and max_time is None:
raise ValueError("Need a stop criteria!")
2017-12-08 23:41:31 +08:00
2017-12-20 16:43:42 +08:00
while step < max_step and time.time() - start_time < max_step:
2017-12-24 01:07:46 +08:00
sel_time, exp_time, back_time = self._expand()
self.selection_time += sel_time
self.expansion_time += exp_time
self.backpropagation_time += back_time
2017-12-20 16:43:42 +08:00
step += 1
if self.debug:
file = open("mcts_profiling.txt", "a")
2017-12-24 01:07:46 +08:00
file.write("[" + str(self.role) + "]"
+ " sel " + '%.3f' % self.selection_time + " "
+ " sel_sta " + '%.3f' % self.state_selection_time + " "
+ " valid " + '%.3f' % self.valid_mask_time + " "
+ " sel_act " + '%.3f' % self.action_selection_time + " "
+ " array2list " + '%.4f' % self.ndarray2list_time + " "
+ " check " + str(self.check) + " "
+ " list2tuple " + '%.4f' % self.list2tuple_time + " \t"
+ " forward " + '%.3f' % self.simulate_sf_time + " "
+ " exp " + '%.3f' % self.expansion_time + " "
+ " bak " + '%.3f' % self.backpropagation_time + " "
2017-12-24 01:07:46 +08:00
+ "\n")
file.close()
2017-12-20 16:43:42 +08:00
def _expand(self):
2017-12-24 01:07:46 +08:00
t0 = time.time()
2017-11-21 22:19:52 +08:00
node, new_action = self.root.selection(self.simulator)
2017-12-24 01:07:46 +08:00
t1 = time.time()
2017-11-26 13:36:52 +08:00
value = node.children[new_action].expansion(self.evaluator, self.action_num)
2017-12-24 01:07:46 +08:00
t2 = time.time()
2017-11-26 13:36:52 +08:00
node.children[new_action].backpropagation(value + 0.)
2017-12-24 01:07:46 +08:00
t3 = time.time()
return t1 - t0, t2 - t1, t3 - t2
2017-11-21 22:19:52 +08:00
if __name__ == "__main__":
pass