2023-09-28 20:07:52 +02:00
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from collections.abc import Sequence
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import TypeAlias
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from tianshou.highlevel.env import Environments
|
2023-10-11 15:31:38 +02:00
|
|
|
from tianshou.utils.net.discrete import ImplicitQuantileNetwork
|
2023-10-05 13:15:24 +02:00
|
|
|
from tianshou.utils.string import ToStringMixin
|
2023-09-28 20:07:52 +02:00
|
|
|
|
2023-10-09 17:22:52 +02:00
|
|
|
TDevice: TypeAlias = str | torch.device
|
2023-09-28 20:07:52 +02:00
|
|
|
|
|
|
|
|
2023-10-09 17:22:52 +02:00
|
|
|
def init_linear_orthogonal(module: torch.nn.Module) -> None:
|
2023-09-28 20:07:52 +02:00
|
|
|
"""Applies orthogonal initialization to linear layers of the given module and sets bias weights to 0.
|
|
|
|
|
|
|
|
:param module: the module whose submodules are to be processed
|
|
|
|
"""
|
|
|
|
for m in module.modules():
|
|
|
|
if isinstance(m, torch.nn.Linear):
|
|
|
|
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
|
|
|
|
torch.nn.init.zeros_(m.bias)
|
|
|
|
|
|
|
|
|
2023-10-11 15:31:38 +02:00
|
|
|
class ModuleFactory(ABC):
|
|
|
|
@abstractmethod
|
|
|
|
def create_module(self, envs: Environments, device: TDevice) -> torch.nn.Module:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-09-28 20:07:52 +02:00
|
|
|
@dataclass
|
2023-10-11 15:31:38 +02:00
|
|
|
class IntermediateModule:
|
2023-09-28 20:07:52 +02:00
|
|
|
module: torch.nn.Module
|
|
|
|
output_dim: int
|
|
|
|
|
|
|
|
|
2023-10-11 15:31:38 +02:00
|
|
|
class IntermediateModuleFactory(ToStringMixin, ModuleFactory, ABC):
|
2023-09-28 20:07:52 +02:00
|
|
|
@abstractmethod
|
2023-10-11 15:31:38 +02:00
|
|
|
def create_intermediate_module(self, envs: Environments, device: TDevice) -> IntermediateModule:
|
2023-09-28 20:07:52 +02:00
|
|
|
pass
|
|
|
|
|
2023-10-11 15:31:38 +02:00
|
|
|
def create_module(self, envs: Environments, device: TDevice) -> torch.nn.Module:
|
|
|
|
return self.create_intermediate_module(envs, device).module
|
|
|
|
|
2023-09-28 20:07:52 +02:00
|
|
|
|
2023-10-11 15:31:38 +02:00
|
|
|
class ImplicitQuantileNetworkFactory(ModuleFactory, ToStringMixin):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
preprocess_net_factory: IntermediateModuleFactory,
|
|
|
|
hidden_sizes: Sequence[int] = (),
|
|
|
|
num_cosines: int = 64,
|
|
|
|
):
|
|
|
|
self.preprocess_net_factory = preprocess_net_factory
|
2023-09-28 20:07:52 +02:00
|
|
|
self.hidden_sizes = hidden_sizes
|
2023-10-11 15:31:38 +02:00
|
|
|
self.num_cosines = num_cosines
|
2023-09-28 20:07:52 +02:00
|
|
|
|
2023-10-11 15:31:38 +02:00
|
|
|
def create_module(self, envs: Environments, device: TDevice) -> ImplicitQuantileNetwork:
|
|
|
|
preprocess_net = self.preprocess_net_factory.create_intermediate_module(envs, device)
|
|
|
|
return ImplicitQuantileNetwork(
|
|
|
|
preprocess_net=preprocess_net.module,
|
|
|
|
action_shape=envs.get_action_shape(),
|
|
|
|
hidden_sizes=self.hidden_sizes,
|
|
|
|
num_cosines=self.num_cosines,
|
|
|
|
preprocess_net_output_dim=preprocess_net.output_dim,
|
|
|
|
device=device,
|
|
|
|
).to(device)
|