Tianshou/tianshou/utils/statistics.py

96 lines
2.8 KiB
Python
Raw Normal View History

2020-03-14 21:48:31 +08:00
import torch
2020-03-12 22:20:33 +08:00
import numpy as np
from numbers import Number
from typing import List, Union
2020-03-12 22:20:33 +08:00
class MovAvg(object):
"""Class for moving average.
It will automatically exclude the infinity and NaN. Usage:
2020-04-03 21:28:12 +08:00
::
>>> stat = MovAvg(size=66)
>>> stat.add(torch.tensor(5))
5.0
>>> stat.add(float('inf')) # which will not add to stat
5.0
>>> stat.add([6, 7, 8])
6.5
>>> stat.get()
6.5
>>> print(f'{stat.mean():.2f}±{stat.std():.2f}')
6.50±1.12
"""
2020-05-12 11:31:47 +08:00
2020-05-16 20:08:32 +08:00
def __init__(self, size: int = 100) -> None:
2020-03-12 22:20:33 +08:00
super().__init__()
self.size = size
self.cache: List[np.number] = []
2020-04-23 22:06:18 +08:00
self.banned = [np.inf, np.nan, -np.inf]
2020-03-12 22:20:33 +08:00
def add(
self, x: Union[Number, np.number, list, np.ndarray, torch.Tensor]
) -> float:
"""Add a scalar into :class:`MovAvg`.
You can add ``torch.Tensor`` with only one element, a python scalar, or
a list of python scalar.
2020-04-03 21:28:12 +08:00
"""
2020-03-14 21:48:31 +08:00
if isinstance(x, torch.Tensor):
x = x.flatten().cpu().numpy()
if np.isscalar(x):
x = [x]
for i in x: # type: ignore
if i not in self.banned:
self.cache.append(i)
2020-03-12 22:20:33 +08:00
if self.size > 0 and len(self.cache) > self.size:
self.cache = self.cache[-self.size:]
return self.get()
def get(self) -> float:
2020-04-04 21:02:06 +08:00
"""Get the average."""
2020-03-12 22:20:33 +08:00
if len(self.cache) == 0:
return 0.0
return float(np.mean(self.cache))
2020-03-15 17:41:00 +08:00
def mean(self) -> float:
2020-04-04 21:02:06 +08:00
"""Get the average. Same as :meth:`get`."""
2020-03-15 17:41:00 +08:00
return self.get()
def std(self) -> float:
2020-04-04 21:02:06 +08:00
"""Get the standard deviation."""
2020-03-15 17:41:00 +08:00
if len(self.cache) == 0:
return 0.0
return float(np.std(self.cache))
class RunningMeanStd(object):
"""Calulates the running mean and std of a data stream.
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
"""
def __init__(
self, mean: Union[float, np.ndarray] = 0.0, std: Union[float, np.ndarray] = 1.0
) -> None:
self.mean, self.var = mean, std
self.count = 0
def update(self, x: np.ndarray) -> None:
"""Add a batch of item into RMS with the same shape, modify mean/var/count."""
batch_mean, batch_var = np.mean(x, axis=0), np.var(x, axis=0)
batch_count = len(x)
delta = batch_mean - self.mean
total_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / total_count
m_a = self.var * self.count
m_b = batch_var * batch_count
m_2 = m_a + m_b + delta ** 2 * self.count * batch_count / total_count
new_var = m_2 / total_count
self.mean, self.var = new_mean, new_var
self.count = total_count