Tianshou/test/continuous/test_ddpg.py

147 lines
5.1 KiB
Python
Raw Normal View History

import argparse
import os
2020-03-20 19:52:29 +08:00
import pprint
import gym
2020-03-18 21:45:41 +08:00
import numpy as np
import torch
2020-03-18 21:45:41 +08:00
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.exploration import GaussianNoise
2020-03-18 21:45:41 +08:00
from tianshou.policy import DDPGPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
2020-03-18 21:45:41 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v1')
parser.add_argument('--seed', type=int, default=0)
2020-03-18 21:45:41 +08:00
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--exploration-noise', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=20000)
parser.add_argument('--step-per-collect', type=int, default=8)
parser.add_argument('--update-per-step', type=float, default=0.125)
2020-03-18 21:45:41 +08:00
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=8)
2020-03-18 21:45:41 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--rew-norm', action="store_true", default=False)
parser.add_argument('--n-step', type=int, default=3)
2020-03-18 21:45:41 +08:00
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
2020-03-18 21:45:41 +08:00
args = parser.parse_known_args()[0]
return args
def test_ddpg(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN
2020-03-18 21:45:41 +08:00
env = gym.make(args.task)
if args.task == 'Pendulum-v1':
2020-03-21 15:31:31 +08:00
env.spec.reward_threshold = -250
2020-03-18 21:45:41 +08:00
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
2020-03-18 21:45:41 +08:00
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
2020-03-18 21:45:41 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
2020-03-18 21:45:41 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(
net, args.action_shape, max_action=args.max_action, device=args.device
).to(args.device)
2020-03-21 15:31:31 +08:00
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device
)
critic = Critic(net, device=args.device).to(args.device)
2020-03-21 15:31:31 +08:00
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
2020-03-18 21:45:41 +08:00
policy = DDPGPolicy(
actor,
actor_optim,
critic,
critic_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
2020-06-03 13:59:47 +08:00
reward_normalization=args.rew_norm,
estimation_step=args.n_step,
action_space=env.action_space
)
2020-03-18 21:45:41 +08:00
# collector
2020-03-19 17:23:46 +08:00
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs)
2020-03-18 21:45:41 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'ddpg')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
2020-03-19 17:23:46 +08:00
2020-04-11 16:54:27 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
2020-03-19 17:23:46 +08:00
# trainer
2020-03-20 19:52:29 +08:00
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger
)
2020-03-25 14:08:28 +08:00
assert stop_fn(result['best_reward'])
2020-03-18 21:45:41 +08:00
if __name__ == '__main__':
2020-03-20 19:52:29 +08:00
pprint.pprint(result)
2020-03-18 21:45:41 +08:00
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-03-18 21:45:41 +08:00
if __name__ == '__main__':
test_ddpg()