2021-11-22 22:21:02 +08:00
|
|
|
import argparse
|
|
|
|
import datetime
|
|
|
|
import os
|
|
|
|
import pickle
|
|
|
|
import pprint
|
|
|
|
|
|
|
|
import gym
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
2022-02-08 11:24:52 -05:00
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
2021-11-22 22:21:02 +08:00
|
|
|
from tianshou.env import SubprocVectorEnv
|
|
|
|
from tianshou.policy import BCQPolicy
|
|
|
|
from tianshou.trainer import offline_trainer
|
|
|
|
from tianshou.utils import TensorboardLogger
|
|
|
|
from tianshou.utils.net.common import MLP, Net
|
|
|
|
from tianshou.utils.net.continuous import VAE, Critic, Perturbation
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2022-02-08 11:24:52 -05:00
|
|
|
from gather_pendulum_data import expert_file_name, gather_data
|
2021-11-22 22:21:02 +08:00
|
|
|
else: # pytest
|
2022-02-08 11:24:52 -05:00
|
|
|
from test.offline.gather_pendulum_data import expert_file_name, gather_data
|
2021-11-22 22:21:02 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
|
|
|
parser.add_argument('--seed', type=int, default=0)
|
2022-02-08 11:24:52 -05:00
|
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64])
|
2021-11-22 22:21:02 +08:00
|
|
|
parser.add_argument('--actor-lr', type=float, default=1e-3)
|
|
|
|
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
2022-02-08 11:24:52 -05:00
|
|
|
parser.add_argument('--epoch', type=int, default=5)
|
|
|
|
parser.add_argument('--step-per-epoch', type=int, default=500)
|
|
|
|
parser.add_argument('--batch-size', type=int, default=32)
|
2021-11-22 22:21:02 +08:00
|
|
|
parser.add_argument('--test-num', type=int, default=10)
|
|
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
|
|
|
2022-02-08 11:24:52 -05:00
|
|
|
parser.add_argument("--vae-hidden-sizes", type=int, nargs='*', default=[32, 32])
|
2021-11-22 22:21:02 +08:00
|
|
|
# default to 2 * action_dim
|
|
|
|
parser.add_argument('--latent_dim', type=int, default=None)
|
|
|
|
parser.add_argument("--gamma", default=0.99)
|
|
|
|
parser.add_argument("--tau", default=0.005)
|
|
|
|
# Weighting for Clipped Double Q-learning in BCQ
|
|
|
|
parser.add_argument("--lmbda", default=0.75)
|
|
|
|
# Max perturbation hyper-parameter for BCQ
|
|
|
|
parser.add_argument("--phi", default=0.05)
|
|
|
|
parser.add_argument(
|
|
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
)
|
|
|
|
parser.add_argument('--resume-path', type=str, default=None)
|
|
|
|
parser.add_argument(
|
|
|
|
'--watch',
|
|
|
|
default=False,
|
|
|
|
action='store_true',
|
|
|
|
help='watch the play of pre-trained policy only',
|
|
|
|
)
|
2022-02-08 11:24:52 -05:00
|
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
2021-11-22 22:21:02 +08:00
|
|
|
args = parser.parse_known_args()[0]
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def test_bcq(args=get_args()):
|
|
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
2022-02-08 11:24:52 -05:00
|
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
|
|
else:
|
|
|
|
buffer = pickle.load(open(args.load_buffer_name, "rb"))
|
2021-11-22 22:21:02 +08:00
|
|
|
else:
|
|
|
|
buffer = gather_data()
|
|
|
|
env = gym.make(args.task)
|
|
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
|
|
args.max_action = env.action_space.high[0] # float
|
|
|
|
if args.task == 'Pendulum-v0':
|
2022-02-08 11:24:52 -05:00
|
|
|
env.spec.reward_threshold = -1100 # too low?
|
2021-11-22 22:21:02 +08:00
|
|
|
|
|
|
|
args.state_dim = args.state_shape[0]
|
|
|
|
args.action_dim = args.action_shape[0]
|
|
|
|
# test_envs = gym.make(args.task)
|
|
|
|
test_envs = SubprocVectorEnv(
|
|
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)]
|
|
|
|
)
|
|
|
|
# seed
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
test_envs.seed(args.seed)
|
|
|
|
|
|
|
|
# model
|
|
|
|
# perturbation network
|
|
|
|
net_a = MLP(
|
|
|
|
input_dim=args.state_dim + args.action_dim,
|
|
|
|
output_dim=args.action_dim,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
device=args.device,
|
|
|
|
)
|
|
|
|
actor = Perturbation(
|
|
|
|
net_a, max_action=args.max_action, device=args.device, phi=args.phi
|
|
|
|
).to(args.device)
|
|
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
|
|
|
|
net_c1 = Net(
|
|
|
|
args.state_shape,
|
|
|
|
args.action_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
concat=True,
|
|
|
|
device=args.device,
|
|
|
|
)
|
|
|
|
net_c2 = Net(
|
|
|
|
args.state_shape,
|
|
|
|
args.action_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
concat=True,
|
|
|
|
device=args.device,
|
|
|
|
)
|
|
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
|
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
|
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
|
|
|
|
# vae
|
|
|
|
# output_dim = 0, so the last Module in the encoder is ReLU
|
|
|
|
vae_encoder = MLP(
|
|
|
|
input_dim=args.state_dim + args.action_dim,
|
|
|
|
hidden_sizes=args.vae_hidden_sizes,
|
|
|
|
device=args.device,
|
|
|
|
)
|
|
|
|
if not args.latent_dim:
|
|
|
|
args.latent_dim = args.action_dim * 2
|
|
|
|
vae_decoder = MLP(
|
|
|
|
input_dim=args.state_dim + args.latent_dim,
|
|
|
|
output_dim=args.action_dim,
|
|
|
|
hidden_sizes=args.vae_hidden_sizes,
|
|
|
|
device=args.device,
|
|
|
|
)
|
|
|
|
vae = VAE(
|
|
|
|
vae_encoder,
|
|
|
|
vae_decoder,
|
|
|
|
hidden_dim=args.vae_hidden_sizes[-1],
|
|
|
|
latent_dim=args.latent_dim,
|
|
|
|
max_action=args.max_action,
|
|
|
|
device=args.device,
|
|
|
|
).to(args.device)
|
|
|
|
vae_optim = torch.optim.Adam(vae.parameters())
|
|
|
|
|
|
|
|
policy = BCQPolicy(
|
|
|
|
actor,
|
|
|
|
actor_optim,
|
|
|
|
critic1,
|
|
|
|
critic1_optim,
|
|
|
|
critic2,
|
|
|
|
critic2_optim,
|
|
|
|
vae,
|
|
|
|
vae_optim,
|
|
|
|
device=args.device,
|
|
|
|
gamma=args.gamma,
|
|
|
|
tau=args.tau,
|
|
|
|
lmbda=args.lmbda,
|
|
|
|
)
|
|
|
|
|
|
|
|
# load a previous policy
|
|
|
|
if args.resume_path:
|
|
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
|
|
|
|
# collector
|
|
|
|
# buffer has been gathered
|
|
|
|
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
|
|
test_collector = Collector(policy, test_envs)
|
|
|
|
# log
|
|
|
|
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
|
|
|
|
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_bcq'
|
|
|
|
log_path = os.path.join(args.logdir, args.task, 'bcq', log_file)
|
|
|
|
writer = SummaryWriter(log_path)
|
|
|
|
writer.add_text("args", str(args))
|
|
|
|
logger = TensorboardLogger(writer)
|
|
|
|
|
|
|
|
def save_fn(policy):
|
|
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
|
|
|
|
def stop_fn(mean_rewards):
|
|
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
|
|
|
|
|
|
def watch():
|
|
|
|
policy.load_state_dict(
|
|
|
|
torch.load(
|
|
|
|
os.path.join(log_path, 'policy.pth'), map_location=torch.device('cpu')
|
|
|
|
)
|
|
|
|
)
|
|
|
|
policy.eval()
|
|
|
|
collector = Collector(policy, env)
|
|
|
|
collector.collect(n_episode=1, render=1 / 35)
|
|
|
|
|
|
|
|
# trainer
|
|
|
|
result = offline_trainer(
|
|
|
|
policy,
|
|
|
|
buffer,
|
|
|
|
test_collector,
|
|
|
|
args.epoch,
|
|
|
|
args.step_per_epoch,
|
|
|
|
args.test_num,
|
|
|
|
args.batch_size,
|
|
|
|
save_fn=save_fn,
|
|
|
|
stop_fn=stop_fn,
|
|
|
|
logger=logger,
|
|
|
|
)
|
|
|
|
assert stop_fn(result['best_reward'])
|
|
|
|
|
|
|
|
# Let's watch its performance!
|
|
|
|
if __name__ == '__main__':
|
|
|
|
pprint.pprint(result)
|
|
|
|
env = gym.make(args.task)
|
|
|
|
policy.eval()
|
|
|
|
collector = Collector(policy, env)
|
|
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
|
|
rews, lens = result["rews"], result["lens"]
|
|
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_bcq()
|