Tianshou/AlphaGo/Network.py

212 lines
11 KiB
Python
Raw Normal View History

2017-11-08 08:32:07 +08:00
import os
2017-11-09 19:23:40 +08:00
import time
2017-11-12 22:40:58 +08:00
import sys
2017-11-09 19:23:40 +08:00
import numpy as np
2017-11-28 17:00:10 +08:00
import time
2017-11-09 19:23:40 +08:00
import tensorflow as tf
2017-11-04 22:16:43 +08:00
import tensorflow.contrib.layers as layers
2017-11-09 19:23:40 +08:00
import multi_gpu
2017-11-12 22:40:58 +08:00
import time
2017-11-09 19:23:40 +08:00
2017-11-26 13:36:52 +08:00
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
2017-11-12 22:40:58 +08:00
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
2017-11-04 22:16:43 +08:00
2017-11-26 13:36:52 +08:00
2017-11-04 22:16:43 +08:00
def residual_block(input, is_training):
2017-11-26 13:36:52 +08:00
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.conv2d(h, 256, kernel_size=3, stride=1, activation_fn=tf.identity,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = h + input
return tf.nn.relu(h)
2017-11-04 22:16:43 +08:00
2017-11-09 19:23:40 +08:00
2017-11-04 22:16:43 +08:00
def policy_heads(input, is_training):
2017-11-26 13:36:52 +08:00
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.flatten(h)
h = layers.fully_connected(h, 362, activation_fn=tf.identity, weights_regularizer=layers.l2_regularizer(1e-4))
return h
2017-11-04 22:16:43 +08:00
2017-11-09 19:23:40 +08:00
2017-11-04 22:16:43 +08:00
def value_heads(input, is_training):
2017-11-26 13:36:52 +08:00
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.flatten(h)
h = layers.fully_connected(h, 256, activation_fn=tf.nn.relu, weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4))
return h
2017-11-04 22:16:43 +08:00
2017-11-09 19:23:40 +08:00
2017-11-28 17:00:10 +08:00
class Network(object):
def __init__(self):
self.x = tf.placeholder(tf.float32, shape=[None, 19, 19, 17])
self.is_training = tf.placeholder(tf.bool, shape=[])
self.z = tf.placeholder(tf.float32, shape=[None, 1])
self.pi = tf.placeholder(tf.float32, shape=[None, 362])
self.build_network()
def build_network(self):
h = layers.conv2d(self.x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu, normalizer_fn=layers.batch_norm,
normalizer_params={'is_training': self.is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS},
weights_regularizer=layers.l2_regularizer(1e-4))
for i in range(19):
h = residual_block(h, self.is_training)
self.v = value_heads(h, self.is_training)
self.p = policy_heads(h, self.is_training)
# loss = tf.reduce_mean(tf.square(z-v)) - tf.multiply(pi, tf.log(tf.clip_by_value(tf.nn.softmax(p), 1e-8, tf.reduce_max(tf.nn.softmax(p)))))
self.value_loss = tf.reduce_mean(tf.square(self.z - self.v))
self.policy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.pi, logits=self.p))
self.reg = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
self.total_loss = self.value_loss + self.policy_loss + self.reg
# train_op = tf.train.MomentumOptimizer(1e-4, momentum=0.9, use_nesterov=True).minimize(total_loss)
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(self.update_ops):
self.train_op = tf.train.RMSPropOptimizer(1e-4).minimize(self.total_loss)
self.var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(max_to_keep=10, var_list=self.var_list)
def train(self):
data_path = "/home/tongzheng/data/"
data_name = os.listdir("/home/tongzheng/data/")
epochs = 100
batch_size = 128
result_path = "./checkpoints/"
with multi_gpu.create_session() as sess:
sess.run(tf.global_variables_initializer())
ckpt_file = tf.train.latest_checkpoint(result_path)
if ckpt_file is not None:
print('Restoring model from {}...'.format(ckpt_file))
self.saver.restore(sess, ckpt_file)
for epoch in range(epochs):
for name in data_name:
data = np.load(data_path + name)
boards = data["boards"]
wins = data["wins"]
ps = data["ps"]
print (boards.shape)
print (wins.shape)
print (ps.shape)
batch_num = boards.shape[0] // batch_size
index = np.arange(boards.shape[0])
np.random.shuffle(index)
value_losses = []
policy_losses = []
regs = []
time_train = -time.time()
for iter in range(batch_num):
lv, lp, r, value, prob, _ = sess.run(
[self.value_loss, self.policy_loss, self.reg, self.v, tf.nn.softmax(p), self.train_op],
feed_dict={self.x: boards[
index[iter * batch_size:(iter + 1) * batch_size]],
self.z: wins[index[
iter * batch_size:(iter + 1) * batch_size]],
self.pi: ps[index[
iter * batch_size:(iter + 1) * batch_size]],
self.is_training: True})
value_losses.append(lv)
policy_losses.append(lp)
regs.append(r)
if iter % 1 == 0:
print(
"Epoch: {}, Part {}, Iteration: {}, Time: {}, Value Loss: {}, Policy Loss: {}, Reg: {}".format(
epoch, name, iter, time.time() + time_train, np.mean(np.array(value_losses)),
np.mean(np.array(policy_losses)), np.mean(np.array(regs))))
time_train = -time.time()
value_losses = []
policy_losses = []
regs = []
if iter % 20 == 0:
save_path = "Epoch{}.Part{}.Iteration{}.ckpt".format(epoch, name, iter)
self.saver.save(sess, result_path + save_path)
del data, boards, wins, ps
# def forward(call_number):
# # checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints"
# checkpoint_path = "/home/jialian/stuGo/tianshou/stuGo/checkpoints/"
# board_file = np.genfromtxt("/home/jialian/stuGo/tianshou/leela-zero/src/mcts_nn_files/board_" + call_number,
# dtype='str');
# human_board = np.zeros((17, 19, 19))
#
# # TODO : is it ok to ignore the last channel?
# for i in range(17):
# human_board[i] = np.array(list(board_file[i])).reshape(19, 19)
# # print("============================")
# # print("human board sum : " + str(np.sum(human_board[-1])))
# # print("============================")
# # print(human_board)
# # print("============================")
# # rint(human_board)
# feed_board = human_board.transpose(1, 2, 0).reshape(1, 19, 19, 17)
# # print(feed_board[:,:,:,-1])
# # print(feed_board.shape)
#
# # npz_board = np.load("/home/yama/rl/tianshou/AlphaGo/data/7f83928932f64a79bc1efdea268698ae.npz")
# # print(npz_board["boards"].shape)
# # feed_board = npz_board["boards"][10].reshape(-1, 19, 19, 17)
# ##print(feed_board)
# # show_board = feed_board[0].transpose(2, 0, 1)
# # print("board shape : ", show_board.shape)
# # print(show_board)
#
# itflag = False
# with multi_gpu.create_session() as sess:
# sess.run(tf.global_variables_initializer())
# ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
# if ckpt_file is not None:
# # print('Restoring model from {}...'.format(ckpt_file))
# saver.restore(sess, ckpt_file)
# else:
# raise ValueError("No model loaded")
# res = sess.run([tf.nn.softmax(p), v], feed_dict={x: feed_board, is_training: itflag})
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][300].reshape(-1, 19, 19, 17), is_training:False})
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][50].reshape(-1, 19, 19, 17), is_training:True})
# # print(np.argmax(res[0]))
# np.savetxt(sys.stdout, res[0][0], fmt="%.6f", newline=" ")
# np.savetxt(sys.stdout, res[1][0], fmt="%.6f", newline=" ")
# pv_file = "/home/jialian/stuGotianshou/leela-zero/src/mcts_nn_files/policy_value"
# np.savetxt(pv_file, np.concatenate((res[0][0], res[1][0])), fmt="%.6f", newline=" ")
# # np.savetxt(pv_file, res[1][0], fmt="%.6f", newline=" ")
# return res
def forward(self):
checkpoint_path = "/home/tongzheng/tianshou/AlphaGo/checkpoints/"
sess = multi_gpu.create_session()
2017-11-26 13:36:52 +08:00
sess.run(tf.global_variables_initializer())
ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
if ckpt_file is not None:
print('Restoring model from {}...'.format(ckpt_file))
2017-11-28 17:00:10 +08:00
self.saver.restore(sess, ckpt_file)
print('Successfully loaded')
2017-11-26 13:36:52 +08:00
else:
raise ValueError("No model loaded")
2017-11-28 17:00:10 +08:00
# prior, value = sess.run([tf.nn.softmax(p), v], feed_dict={x: state, is_training: False})
# return prior, value
return sess
2017-11-26 13:36:52 +08:00
if __name__ == '__main__':
2017-11-28 17:00:10 +08:00
state = np.random.randint(0, 1, [1, 19, 19, 17])
net = Network()
sess = net.forward()
start = time.time()
for i in range(100):
sess.run([tf.nn.softmax(net.p), net.v], feed_dict={net.x: state, net.is_training: False})
print("Step {}, Cumulative time {}".format(i, time.time() - start))