2017-11-08 08:32:07 +08:00
|
|
|
import os
|
2017-11-09 19:23:40 +08:00
|
|
|
import time
|
2017-11-12 22:40:58 +08:00
|
|
|
import sys
|
2017-11-09 19:23:40 +08:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
2017-11-04 22:16:43 +08:00
|
|
|
import tensorflow.contrib.layers as layers
|
2017-11-09 19:23:40 +08:00
|
|
|
|
|
|
|
import multi_gpu
|
2017-11-12 22:40:58 +08:00
|
|
|
import time
|
2017-11-09 19:23:40 +08:00
|
|
|
|
2017-11-26 13:36:52 +08:00
|
|
|
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
2017-11-12 22:40:58 +08:00
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
2017-11-04 22:16:43 +08:00
|
|
|
|
2017-11-26 13:36:52 +08:00
|
|
|
|
2017-11-04 22:16:43 +08:00
|
|
|
def residual_block(input, is_training):
|
2017-11-26 13:36:52 +08:00
|
|
|
normalizer_params = {'is_training': is_training,
|
|
|
|
'updates_collections': tf.GraphKeys.UPDATE_OPS}
|
|
|
|
h = layers.conv2d(input, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
|
|
|
|
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
|
|
|
weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
h = layers.conv2d(h, 256, kernel_size=3, stride=1, activation_fn=tf.identity,
|
|
|
|
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
|
|
|
weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
h = h + input
|
|
|
|
return tf.nn.relu(h)
|
2017-11-04 22:16:43 +08:00
|
|
|
|
2017-11-09 19:23:40 +08:00
|
|
|
|
2017-11-04 22:16:43 +08:00
|
|
|
def policy_heads(input, is_training):
|
2017-11-26 13:36:52 +08:00
|
|
|
normalizer_params = {'is_training': is_training,
|
|
|
|
'updates_collections': tf.GraphKeys.UPDATE_OPS}
|
|
|
|
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
|
|
|
|
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
|
|
|
weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
h = layers.flatten(h)
|
|
|
|
h = layers.fully_connected(h, 362, activation_fn=tf.identity, weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
return h
|
2017-11-04 22:16:43 +08:00
|
|
|
|
2017-11-09 19:23:40 +08:00
|
|
|
|
2017-11-04 22:16:43 +08:00
|
|
|
def value_heads(input, is_training):
|
2017-11-26 13:36:52 +08:00
|
|
|
normalizer_params = {'is_training': is_training,
|
|
|
|
'updates_collections': tf.GraphKeys.UPDATE_OPS}
|
|
|
|
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
|
|
|
|
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
|
|
|
weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
h = layers.flatten(h)
|
|
|
|
h = layers.fully_connected(h, 256, activation_fn=tf.nn.relu, weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4))
|
|
|
|
return h
|
2017-11-04 22:16:43 +08:00
|
|
|
|
2017-11-09 19:23:40 +08:00
|
|
|
|
|
|
|
x = tf.placeholder(tf.float32, shape=[None, 19, 19, 17])
|
2017-11-04 22:16:43 +08:00
|
|
|
is_training = tf.placeholder(tf.bool, shape=[])
|
|
|
|
z = tf.placeholder(tf.float32, shape=[None, 1])
|
|
|
|
pi = tf.placeholder(tf.float32, shape=[None, 362])
|
|
|
|
|
2017-11-09 19:23:40 +08:00
|
|
|
h = layers.conv2d(x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu, normalizer_fn=layers.batch_norm,
|
2017-11-26 13:36:52 +08:00
|
|
|
normalizer_params={'is_training': is_training, 'updates_collections': tf.GraphKeys.UPDATE_OPS},
|
|
|
|
weights_regularizer=layers.l2_regularizer(1e-4))
|
2017-11-09 19:23:40 +08:00
|
|
|
for i in range(19):
|
2017-11-26 13:36:52 +08:00
|
|
|
h = residual_block(h, is_training)
|
2017-11-04 22:16:43 +08:00
|
|
|
v = value_heads(h, is_training)
|
|
|
|
p = policy_heads(h, is_training)
|
2017-11-09 19:23:40 +08:00
|
|
|
# loss = tf.reduce_mean(tf.square(z-v)) - tf.multiply(pi, tf.log(tf.clip_by_value(tf.nn.softmax(p), 1e-8, tf.reduce_max(tf.nn.softmax(p)))))
|
|
|
|
value_loss = tf.reduce_mean(tf.square(z - v))
|
2017-11-09 19:25:33 +08:00
|
|
|
policy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=pi, logits=p))
|
2017-11-04 22:16:43 +08:00
|
|
|
|
2017-11-09 19:23:40 +08:00
|
|
|
reg = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
|
|
|
|
total_loss = value_loss + policy_loss + reg
|
|
|
|
# train_op = tf.train.MomentumOptimizer(1e-4, momentum=0.9, use_nesterov=True).minimize(total_loss)
|
|
|
|
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
|
|
|
|
with tf.control_dependencies(update_ops):
|
2017-11-26 13:36:52 +08:00
|
|
|
train_op = tf.train.RMSPropOptimizer(1e-4).minimize(total_loss)
|
2017-11-16 13:21:27 +08:00
|
|
|
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
2017-11-04 22:16:43 +08:00
|
|
|
saver = tf.train.Saver(max_to_keep=10, var_list=var_list)
|
2017-11-09 19:23:40 +08:00
|
|
|
|
|
|
|
|
2017-11-05 15:30:35 +08:00
|
|
|
def train():
|
2017-11-26 13:36:52 +08:00
|
|
|
data_path = "/home/tongzheng/data/"
|
|
|
|
data_name = os.listdir("/home/tongzheng/data/")
|
|
|
|
epochs = 100
|
|
|
|
batch_size = 128
|
|
|
|
|
|
|
|
result_path = "./checkpoints/"
|
|
|
|
with multi_gpu.create_session() as sess:
|
|
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
ckpt_file = tf.train.latest_checkpoint(result_path)
|
|
|
|
if ckpt_file is not None:
|
|
|
|
print('Restoring model from {}...'.format(ckpt_file))
|
|
|
|
saver.restore(sess, ckpt_file)
|
|
|
|
for epoch in range(epochs):
|
|
|
|
for name in data_name:
|
|
|
|
data = np.load(data_path + name)
|
|
|
|
boards = data["boards"]
|
|
|
|
wins = data["wins"]
|
|
|
|
ps = data["ps"]
|
|
|
|
print (boards.shape)
|
|
|
|
print (wins.shape)
|
|
|
|
print (ps.shape)
|
|
|
|
batch_num = boards.shape[0] // batch_size
|
|
|
|
index = np.arange(boards.shape[0])
|
|
|
|
np.random.shuffle(index)
|
|
|
|
value_losses = []
|
|
|
|
policy_losses = []
|
|
|
|
regs = []
|
|
|
|
time_train = -time.time()
|
|
|
|
for iter in range(batch_num):
|
|
|
|
lv, lp, r, value, prob, _ = sess.run([value_loss, policy_loss, reg, v, tf.nn.softmax(p), train_op],
|
|
|
|
feed_dict={x: boards[
|
|
|
|
index[iter * batch_size:(iter + 1) * batch_size]],
|
|
|
|
z: wins[index[
|
|
|
|
iter * batch_size:(iter + 1) * batch_size]],
|
|
|
|
pi: ps[index[
|
|
|
|
iter * batch_size:(iter + 1) * batch_size]],
|
|
|
|
is_training: True})
|
|
|
|
value_losses.append(lv)
|
|
|
|
policy_losses.append(lp)
|
|
|
|
regs.append(r)
|
|
|
|
if iter % 1 == 0:
|
|
|
|
print(
|
|
|
|
"Epoch: {}, Part {}, Iteration: {}, Time: {}, Value Loss: {}, Policy Loss: {}, Reg: {}".format(
|
|
|
|
epoch, name, iter, time.time() + time_train, np.mean(np.array(value_losses)),
|
|
|
|
np.mean(np.array(policy_losses)), np.mean(np.array(regs))))
|
|
|
|
time_train = -time.time()
|
|
|
|
value_losses = []
|
|
|
|
policy_losses = []
|
|
|
|
regs = []
|
|
|
|
if iter % 20 == 0:
|
|
|
|
save_path = "Epoch{}.Part{}.Iteration{}.ckpt".format(epoch, name, iter)
|
|
|
|
saver.save(sess, result_path + save_path)
|
|
|
|
del data, boards, wins, ps
|
|
|
|
|
|
|
|
|
|
|
|
# def forward(call_number):
|
|
|
|
# # checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints"
|
|
|
|
# checkpoint_path = "/home/jialian/stuGo/tianshou/stuGo/checkpoints/"
|
|
|
|
# board_file = np.genfromtxt("/home/jialian/stuGo/tianshou/leela-zero/src/mcts_nn_files/board_" + call_number,
|
|
|
|
# dtype='str');
|
|
|
|
# human_board = np.zeros((17, 19, 19))
|
|
|
|
#
|
|
|
|
# # TODO : is it ok to ignore the last channel?
|
|
|
|
# for i in range(17):
|
|
|
|
# human_board[i] = np.array(list(board_file[i])).reshape(19, 19)
|
|
|
|
# # print("============================")
|
|
|
|
# # print("human board sum : " + str(np.sum(human_board[-1])))
|
|
|
|
# # print("============================")
|
|
|
|
# # print(human_board)
|
|
|
|
# # print("============================")
|
|
|
|
# # rint(human_board)
|
|
|
|
# feed_board = human_board.transpose(1, 2, 0).reshape(1, 19, 19, 17)
|
|
|
|
# # print(feed_board[:,:,:,-1])
|
|
|
|
# # print(feed_board.shape)
|
|
|
|
#
|
|
|
|
# # npz_board = np.load("/home/yama/rl/tianshou/AlphaGo/data/7f83928932f64a79bc1efdea268698ae.npz")
|
|
|
|
# # print(npz_board["boards"].shape)
|
|
|
|
# # feed_board = npz_board["boards"][10].reshape(-1, 19, 19, 17)
|
|
|
|
# ##print(feed_board)
|
|
|
|
# # show_board = feed_board[0].transpose(2, 0, 1)
|
|
|
|
# # print("board shape : ", show_board.shape)
|
|
|
|
# # print(show_board)
|
|
|
|
#
|
|
|
|
# itflag = False
|
|
|
|
# with multi_gpu.create_session() as sess:
|
|
|
|
# sess.run(tf.global_variables_initializer())
|
|
|
|
# ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
|
|
|
|
# if ckpt_file is not None:
|
|
|
|
# # print('Restoring model from {}...'.format(ckpt_file))
|
|
|
|
# saver.restore(sess, ckpt_file)
|
|
|
|
# else:
|
|
|
|
# raise ValueError("No model loaded")
|
|
|
|
# res = sess.run([tf.nn.softmax(p), v], feed_dict={x: feed_board, is_training: itflag})
|
|
|
|
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][300].reshape(-1, 19, 19, 17), is_training:False})
|
|
|
|
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][50].reshape(-1, 19, 19, 17), is_training:True})
|
|
|
|
# # print(np.argmax(res[0]))
|
|
|
|
# np.savetxt(sys.stdout, res[0][0], fmt="%.6f", newline=" ")
|
|
|
|
# np.savetxt(sys.stdout, res[1][0], fmt="%.6f", newline=" ")
|
|
|
|
# pv_file = "/home/jialian/stuGotianshou/leela-zero/src/mcts_nn_files/policy_value"
|
|
|
|
# np.savetxt(pv_file, np.concatenate((res[0][0], res[1][0])), fmt="%.6f", newline=" ")
|
|
|
|
# # np.savetxt(pv_file, res[1][0], fmt="%.6f", newline=" ")
|
|
|
|
# return res
|
|
|
|
|
|
|
|
def forward(state):
|
|
|
|
checkpoint_path = "/home/tongzheng/tianshou/AlphaGo/checkpoints/"
|
2017-11-12 22:40:58 +08:00
|
|
|
with multi_gpu.create_session() as sess:
|
2017-11-26 13:36:52 +08:00
|
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
|
|
|
|
if ckpt_file is not None:
|
|
|
|
print('Restoring model from {}...'.format(ckpt_file))
|
|
|
|
saver.restore(sess, ckpt_file)
|
|
|
|
else:
|
|
|
|
raise ValueError("No model loaded")
|
|
|
|
prior, value = sess.run([tf.nn.softmax(p), v], feed_dict={x: state, is_training: False})
|
|
|
|
return prior, value
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
np.set_printoptions(threshold='nan')
|
|
|
|
# time.sleep(2)
|
|
|
|
forward(sys.argv[1])
|