| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | import argparse | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  | import os | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | import pprint | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import gym | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | import torch | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | from tianshou.data import Collector, VectorReplayBuffer | 
					
						
							|  |  |  | from tianshou.env import DummyVectorEnv | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | from tianshou.policy import PPOPolicy | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | from tianshou.trainer import onpolicy_trainer | 
					
						
							| 
									
										
										
										
											2021-08-30 10:35:02 -04:00
										 |  |  | from tianshou.utils import TensorboardLogger | 
					
						
							| 
									
										
										
										
											2020-09-02 13:03:32 +08:00
										 |  |  | from tianshou.utils.net.common import Net | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  | from tianshou.utils.net.discrete import Actor, Critic | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument('--task', type=str, default='CartPole-v0') | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--seed', type=int, default=0) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     parser.add_argument('--buffer-size', type=int, default=20000) | 
					
						
							| 
									
										
										
										
											2021-08-15 21:37:37 +08:00
										 |  |  |     parser.add_argument('--lr', type=float, default=3e-4) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--gamma', type=float, default=0.99) | 
					
						
							|  |  |  |     parser.add_argument('--epoch', type=int, default=10) | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |     parser.add_argument('--step-per-epoch', type=int, default=50000) | 
					
						
							| 
									
										
										
										
											2021-08-15 21:37:37 +08:00
										 |  |  |     parser.add_argument('--step-per-collect', type=int, default=2000) | 
					
						
							|  |  |  |     parser.add_argument('--repeat-per-collect', type=int, default=10) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     parser.add_argument('--batch-size', type=int, default=64) | 
					
						
							| 
									
										
										
										
											2021-03-30 11:50:35 +08:00
										 |  |  |     parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--training-num', type=int, default=20) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     parser.add_argument('--test-num', type=int, default=100) | 
					
						
							|  |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							| 
									
										
										
										
											2020-03-28 07:27:18 +08:00
										 |  |  |     parser.add_argument('--render', type=float, default=0.) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     # ppo special | 
					
						
							|  |  |  |     parser.add_argument('--vf-coef', type=float, default=0.5) | 
					
						
							|  |  |  |     parser.add_argument('--ent-coef', type=float, default=0.0) | 
					
						
							|  |  |  |     parser.add_argument('--eps-clip', type=float, default=0.2) | 
					
						
							|  |  |  |     parser.add_argument('--max-grad-norm', type=float, default=0.5) | 
					
						
							| 
									
										
										
										
											2021-03-30 11:50:35 +08:00
										 |  |  |     parser.add_argument('--gae-lambda', type=float, default=0.95) | 
					
						
							| 
									
										
										
										
											2021-08-15 21:37:37 +08:00
										 |  |  |     parser.add_argument('--rew-norm', type=int, default=0) | 
					
						
							|  |  |  |     parser.add_argument('--norm-adv', type=int, default=0) | 
					
						
							|  |  |  |     parser.add_argument('--recompute-adv', type=int, default=0) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--dual-clip', type=float, default=None) | 
					
						
							| 
									
										
										
										
											2021-08-15 21:37:37 +08:00
										 |  |  |     parser.add_argument('--value-clip', type=int, default=0) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_ppo(args=get_args()): | 
					
						
							|  |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     # train_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-04-03 21:28:12 +08:00
										 |  |  |     # you can also use tianshou.env.SubprocVectorEnv | 
					
						
							| 
									
										
										
										
											2020-08-19 15:00:24 +08:00
										 |  |  |     train_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.training_num)] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     # test_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-19 15:00:24 +08:00
										 |  |  |     test_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     train_envs.seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  |     # model | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) | 
					
						
							| 
									
										
										
										
											2021-02-09 17:13:40 +08:00
										 |  |  |     actor = Actor(net, args.action_shape, device=args.device).to(args.device) | 
					
						
							|  |  |  |     critic = Critic(net, device=args.device).to(args.device) | 
					
						
							| 
									
										
										
										
											2020-05-16 20:27:01 +08:00
										 |  |  |     # orthogonal initialization | 
					
						
							| 
									
										
										
										
											2021-08-30 02:07:03 +08:00
										 |  |  |     for m in set(actor.modules()).union(critic.modules()): | 
					
						
							| 
									
										
										
										
											2020-05-16 20:27:01 +08:00
										 |  |  |         if isinstance(m, torch.nn.Linear): | 
					
						
							|  |  |  |             torch.nn.init.orthogonal_(m.weight) | 
					
						
							| 
									
										
										
										
											2020-05-17 17:06:20 +08:00
										 |  |  |             torch.nn.init.zeros_(m.bias) | 
					
						
							| 
									
										
										
										
											2021-05-06 08:53:53 +08:00
										 |  |  |     optim = torch.optim.Adam( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         set(actor.parameters()).union(critic.parameters()), lr=args.lr | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     dist = torch.distributions.Categorical | 
					
						
							|  |  |  |     policy = PPOPolicy( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         actor, | 
					
						
							|  |  |  |         critic, | 
					
						
							|  |  |  |         optim, | 
					
						
							|  |  |  |         dist, | 
					
						
							| 
									
										
										
										
											2021-03-23 22:05:48 +08:00
										 |  |  |         discount_factor=args.gamma, | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |         max_grad_norm=args.max_grad_norm, | 
					
						
							|  |  |  |         eps_clip=args.eps_clip, | 
					
						
							|  |  |  |         vf_coef=args.vf_coef, | 
					
						
							|  |  |  |         ent_coef=args.ent_coef, | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |         gae_lambda=args.gae_lambda, | 
					
						
							|  |  |  |         reward_normalization=args.rew_norm, | 
					
						
							|  |  |  |         dual_clip=args.dual_clip, | 
					
						
							| 
									
										
										
										
											2021-03-21 16:45:50 +08:00
										 |  |  |         value_clip=args.value_clip, | 
					
						
							| 
									
										
										
										
											2021-04-27 21:22:39 +08:00
										 |  |  |         action_space=env.action_space, | 
					
						
							| 
									
										
										
										
											2021-08-15 21:37:37 +08:00
										 |  |  |         deterministic_eval=True, | 
					
						
							|  |  |  |         advantage_normalization=args.norm_adv, | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         recompute_advantage=args.recompute_adv | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     # collector | 
					
						
							|  |  |  |     train_collector = Collector( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-23 11:34:52 +08:00
										 |  |  |     test_collector = Collector(policy, test_envs) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     # log | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  |     log_path = os.path.join(args.logdir, args.task, 'ppo') | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							| 
									
										
										
										
											2021-08-30 10:35:02 -04:00
										 |  |  |     logger = TensorboardLogger(writer) | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-09-26 16:35:37 +08:00
										 |  |  |     def stop_fn(mean_rewards): | 
					
						
							|  |  |  |         return mean_rewards >= env.spec.reward_threshold | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # trainer | 
					
						
							|  |  |  |     result = onpolicy_trainer( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         policy, | 
					
						
							|  |  |  |         train_collector, | 
					
						
							|  |  |  |         test_collector, | 
					
						
							|  |  |  |         args.epoch, | 
					
						
							|  |  |  |         args.step_per_epoch, | 
					
						
							|  |  |  |         args.repeat_per_collect, | 
					
						
							|  |  |  |         args.test_num, | 
					
						
							|  |  |  |         args.batch_size, | 
					
						
							|  |  |  |         step_per_collect=args.step_per_collect, | 
					
						
							|  |  |  |         stop_fn=stop_fn, | 
					
						
							|  |  |  |         save_fn=save_fn, | 
					
						
							|  |  |  |         logger=logger | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     assert stop_fn(result['best_reward']) | 
					
						
							| 
									
										
										
										
											2021-05-06 08:53:53 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     if __name__ == '__main__': | 
					
						
							|  |  |  |         pprint.pprint(result) | 
					
						
							|  |  |  |         # Let's watch its performance! | 
					
						
							|  |  |  |         env = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-27 12:15:18 +08:00
										 |  |  |         policy.eval() | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |         collector = Collector(policy, env) | 
					
						
							| 
									
										
										
										
											2020-03-28 07:27:18 +08:00
										 |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |         rews, lens = result["rews"], result["lens"] | 
					
						
							|  |  |  |         print(f"Final reward: {rews.mean()}, length: {lens.mean()}") | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |     test_ppo() |