Tianshou/test/discrete/test_pg.py

152 lines
5.2 KiB
Python
Raw Normal View History

2020-03-17 11:37:31 +08:00
import gym
import time
import torch
2020-03-20 19:52:29 +08:00
import pprint
2020-03-17 11:37:31 +08:00
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import PGPolicy
from tianshou.env import SubprocVectorEnv
2020-03-20 19:52:29 +08:00
from tianshou.trainer import onpolicy_trainer
2020-03-17 11:37:31 +08:00
from tianshou.data import Batch, Collector, ReplayBuffer
2020-03-21 10:58:01 +08:00
if __name__ == '__main__':
from net import Net
else: # pytest
from test.discrete.net import Net
2020-03-17 11:37:31 +08:00
def compute_return_base(batch, aa=None, bb=None, gamma=0.1):
returns = np.zeros_like(batch.rew)
last = 0
for i in reversed(range(len(batch.rew))):
returns[i] = batch.rew[i]
if not batch.done[i]:
returns[i] += last * gamma
last = returns[i]
batch.update(returns=returns)
return batch
def test_fn(size=2560):
2020-03-17 20:22:37 +08:00
policy = PGPolicy(None, None, None, discount_factor=0.1)
2020-03-17 11:37:31 +08:00
fn = policy.process_fn
# fn = compute_return_base
batch = Batch(
done=np.array([1, 0, 0, 1, 0, 1, 0, 1.]),
rew=np.array([0, 1, 2, 3, 4, 5, 6, 7.]),
)
batch = fn(batch, None, None)
ans = np.array([0, 1.23, 2.3, 3, 4.5, 5, 6.7, 7])
assert abs(batch.returns - ans).sum() <= 1e-5
batch = Batch(
done=np.array([0, 1, 0, 1, 0, 1, 0.]),
rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
)
batch = fn(batch, None, None)
ans = np.array([7.6, 6, 1.2, 2, 3.4, 4, 5])
assert abs(batch.returns - ans).sum() <= 1e-5
batch = Batch(
done=np.array([0, 1, 0, 1, 0, 0, 1.]),
rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
)
batch = fn(batch, None, None)
ans = np.array([7.6, 6, 1.2, 2, 3.45, 4.5, 5])
assert abs(batch.returns - ans).sum() <= 1e-5
if __name__ == '__main__':
batch = Batch(
done=np.random.randint(100, size=size) == 0,
rew=np.random.random(size),
)
cnt = 3000
t = time.time()
for _ in range(cnt):
compute_return_base(batch)
print(f'vanilla: {(time.time() - t) / cnt}')
t = time.time()
for _ in range(cnt):
policy.process_fn(batch, None, None)
print(f'policy: {(time.time() - t) / cnt}')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
2020-03-17 15:16:30 +08:00
parser.add_argument('--lr', type=float, default=3e-4)
2020-03-17 11:37:31 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=100)
2020-03-20 19:52:29 +08:00
parser.add_argument('--step-per-epoch', type=int, default=1000)
2020-03-17 15:16:30 +08:00
parser.add_argument('--collect-per-step', type=int, default=10)
2020-03-20 19:52:29 +08:00
parser.add_argument('--repeat-per-collect', type=int, default=2)
2020-03-17 11:37:31 +08:00
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
2020-03-17 15:16:30 +08:00
parser.add_argument('--test-num', type=int, default=100)
2020-03-17 11:37:31 +08:00
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_pg(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
2020-03-21 10:58:01 +08:00
net = Net(
args.layer_num, args.state_shape, args.action_shape,
device=args.device)
2020-03-17 11:37:31 +08:00
net = net.to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = PGPolicy(net, optim, dist, args.gamma)
# collector
2020-03-19 17:23:46 +08:00
train_collector = Collector(
2020-03-17 11:37:31 +08:00
policy, train_envs, ReplayBuffer(args.buffer_size))
2020-03-23 11:34:52 +08:00
test_collector = Collector(policy, test_envs)
2020-03-17 11:37:31 +08:00
# log
writer = SummaryWriter(args.logdir)
2020-03-19 17:23:46 +08:00
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
2020-03-20 19:52:29 +08:00
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer)
assert stop_fn(result['best_reward'])
2020-03-19 17:23:46 +08:00
train_collector.close()
2020-03-17 11:37:31 +08:00
test_collector.close()
if __name__ == '__main__':
2020-03-20 19:52:29 +08:00
pprint.pprint(result)
2020-03-17 11:37:31 +08:00
# Let's watch its performance!
env = gym.make(args.task)
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
2020-03-17 11:37:31 +08:00
if __name__ == '__main__':
# test_fn()
test_pg()