td3
This commit is contained in:
parent
a87563b8e6
commit
30a0fc079c
@ -79,7 +79,7 @@ def test_ddpg(args=get_args()):
|
|||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
||||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
test_collector = Collector(policy, test_envs)
|
||||||
# log
|
# log
|
||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
|
@ -86,7 +86,7 @@ def _test_ppo(args=get_args()):
|
|||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
test_collector = Collector(policy, test_envs)
|
||||||
train_collector.collect(n_step=args.step_per_epoch)
|
train_collector.collect(n_step=args.step_per_epoch)
|
||||||
# log
|
# log
|
||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
118
test/continuous/test_td3.py
Normal file
118
test/continuous/test_td3.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import pprint
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from tianshou.policy import TD3Policy
|
||||||
|
from tianshou.trainer import offpolicy_trainer
|
||||||
|
from tianshou.data import Collector, ReplayBuffer
|
||||||
|
from tianshou.env import VectorEnv, SubprocVectorEnv
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from net import Actor, Critic
|
||||||
|
else: # pytest
|
||||||
|
from test.continuous.net import Actor, Critic
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
||||||
|
parser.add_argument('--seed', type=int, default=1626)
|
||||||
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
||||||
|
parser.add_argument('--actor-lr', type=float, default=3e-4)
|
||||||
|
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
||||||
|
parser.add_argument('--gamma', type=float, default=0.99)
|
||||||
|
parser.add_argument('--tau', type=float, default=0.005)
|
||||||
|
parser.add_argument('--exploration-noise', type=float, default=0.1)
|
||||||
|
parser.add_argument('--policy-noise', type=float, default=0.2)
|
||||||
|
parser.add_argument('--noise-clip', type=float, default=0.5)
|
||||||
|
parser.add_argument('--update-actor-freq', type=int, default=2)
|
||||||
|
parser.add_argument('--epoch', type=int, default=100)
|
||||||
|
parser.add_argument('--step-per-epoch', type=int, default=2400)
|
||||||
|
parser.add_argument('--collect-per-step', type=int, default=10)
|
||||||
|
parser.add_argument('--batch-size', type=int, default=128)
|
||||||
|
parser.add_argument('--layer-num', type=int, default=1)
|
||||||
|
parser.add_argument('--training-num', type=int, default=8)
|
||||||
|
parser.add_argument('--test-num', type=int, default=100)
|
||||||
|
parser.add_argument('--logdir', type=str, default='log')
|
||||||
|
parser.add_argument(
|
||||||
|
'--device', type=str,
|
||||||
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
args = parser.parse_known_args()[0]
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def test_td3(args=get_args()):
|
||||||
|
env = gym.make(args.task)
|
||||||
|
if args.task == 'Pendulum-v0':
|
||||||
|
env.spec.reward_threshold = -250
|
||||||
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||||
|
args.action_shape = env.action_space.shape or env.action_space.n
|
||||||
|
args.max_action = env.action_space.high[0]
|
||||||
|
# train_envs = gym.make(args.task)
|
||||||
|
train_envs = VectorEnv(
|
||||||
|
[lambda: gym.make(args.task) for _ in range(args.training_num)],
|
||||||
|
reset_after_done=True)
|
||||||
|
# test_envs = gym.make(args.task)
|
||||||
|
test_envs = SubprocVectorEnv(
|
||||||
|
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
||||||
|
reset_after_done=False)
|
||||||
|
# seed
|
||||||
|
np.random.seed(args.seed)
|
||||||
|
torch.manual_seed(args.seed)
|
||||||
|
train_envs.seed(args.seed)
|
||||||
|
test_envs.seed(args.seed)
|
||||||
|
# model
|
||||||
|
actor = Actor(
|
||||||
|
args.layer_num, args.state_shape, args.action_shape,
|
||||||
|
args.max_action, args.device
|
||||||
|
).to(args.device)
|
||||||
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
||||||
|
critic1 = Critic(
|
||||||
|
args.layer_num, args.state_shape, args.action_shape, args.device
|
||||||
|
).to(args.device)
|
||||||
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
||||||
|
critic2 = Critic(
|
||||||
|
args.layer_num, args.state_shape, args.action_shape, args.device
|
||||||
|
).to(args.device)
|
||||||
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
||||||
|
policy = TD3Policy(
|
||||||
|
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
|
||||||
|
args.tau, args.gamma, args.exploration_noise, args.policy_noise,
|
||||||
|
args.update_actor_freq, args.noise_clip,
|
||||||
|
[env.action_space.low[0], env.action_space.high[0]],
|
||||||
|
reward_normalization=True)
|
||||||
|
# collector
|
||||||
|
train_collector = Collector(
|
||||||
|
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
||||||
|
test_collector = Collector(policy, test_envs)
|
||||||
|
train_collector.collect(n_step=args.buffer_size)
|
||||||
|
# log
|
||||||
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
|
def stop_fn(x):
|
||||||
|
return x >= env.spec.reward_threshold
|
||||||
|
|
||||||
|
# trainer
|
||||||
|
result = offpolicy_trainer(
|
||||||
|
policy, train_collector, test_collector, args.epoch,
|
||||||
|
args.step_per_epoch, args.collect_per_step, args.test_num,
|
||||||
|
args.batch_size, stop_fn=stop_fn, writer=writer)
|
||||||
|
if args.task == 'Pendulum-v0':
|
||||||
|
assert stop_fn(result['best_reward'])
|
||||||
|
train_collector.close()
|
||||||
|
test_collector.close()
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pprint.pprint(result)
|
||||||
|
# Let's watch its performance!
|
||||||
|
env = gym.make(args.task)
|
||||||
|
collector = Collector(policy, env)
|
||||||
|
result = collector.collect(n_episode=1, render=1 / 35)
|
||||||
|
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
|
||||||
|
collector.close()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_td3()
|
@ -73,7 +73,7 @@ def test_a2c(args=get_args()):
|
|||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
test_collector = Collector(policy, test_envs)
|
||||||
# log
|
# log
|
||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
|
@ -66,8 +66,8 @@ def test_dqn(args=get_args()):
|
|||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
test_collector = Collector(policy, test_envs)
|
||||||
train_collector.collect(n_step=args.batch_size)
|
train_collector.collect(n_step=args.buffer_size)
|
||||||
# log
|
# log
|
||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
|
@ -121,7 +121,7 @@ def test_pg(args=get_args()):
|
|||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
test_collector = Collector(policy, test_envs)
|
||||||
# log
|
# log
|
||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
|
@ -78,7 +78,7 @@ def test_ppo(args=get_args()):
|
|||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
test_collector = Collector(policy, test_envs)
|
||||||
# log
|
# log
|
||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
|
@ -4,6 +4,8 @@ from tianshou.policy.pg import PGPolicy
|
|||||||
from tianshou.policy.a2c import A2CPolicy
|
from tianshou.policy.a2c import A2CPolicy
|
||||||
from tianshou.policy.ddpg import DDPGPolicy
|
from tianshou.policy.ddpg import DDPGPolicy
|
||||||
from tianshou.policy.ppo import PPOPolicy
|
from tianshou.policy.ppo import PPOPolicy
|
||||||
|
from tianshou.policy.td3 import TD3Policy
|
||||||
|
from tianshou.policy.sac import SACPolicy
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'BasePolicy',
|
'BasePolicy',
|
||||||
@ -12,4 +14,6 @@ __all__ = [
|
|||||||
'A2CPolicy',
|
'A2CPolicy',
|
||||||
'DDPGPolicy',
|
'DDPGPolicy',
|
||||||
'PPOPolicy',
|
'PPOPolicy',
|
||||||
|
'TD3Policy',
|
||||||
|
'SACPolicy',
|
||||||
]
|
]
|
||||||
|
@ -18,9 +18,10 @@ class DDPGPolicy(BasePolicy):
|
|||||||
self.actor, self.actor_old = actor, deepcopy(actor)
|
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||||
self.actor_old.eval()
|
self.actor_old.eval()
|
||||||
self.actor_optim = actor_optim
|
self.actor_optim = actor_optim
|
||||||
self.critic, self.critic_old = critic, deepcopy(critic)
|
if critic is not None:
|
||||||
self.critic_old.eval()
|
self.critic, self.critic_old = critic, deepcopy(critic)
|
||||||
self.critic_optim = critic_optim
|
self.critic_old.eval()
|
||||||
|
self.critic_optim = critic_optim
|
||||||
assert 0 < tau <= 1, 'tau should in (0, 1]'
|
assert 0 < tau <= 1, 'tau should in (0, 1]'
|
||||||
self._tau = tau
|
self._tau = tau
|
||||||
assert 0 < gamma <= 1, 'gamma should in (0, 1]'
|
assert 0 < gamma <= 1, 'gamma should in (0, 1]'
|
||||||
@ -45,9 +46,6 @@ class DDPGPolicy(BasePolicy):
|
|||||||
self.actor.eval()
|
self.actor.eval()
|
||||||
self.critic.eval()
|
self.critic.eval()
|
||||||
|
|
||||||
def process_fn(self, batch, buffer, indice):
|
|
||||||
return batch
|
|
||||||
|
|
||||||
def sync_weight(self):
|
def sync_weight(self):
|
||||||
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
||||||
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||||
|
26
tianshou/policy/sac.py
Normal file
26
tianshou/policy/sac.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from copy import deepcopy
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from tianshou.data import Batch
|
||||||
|
from tianshou.policy import DDPGPolicy
|
||||||
|
|
||||||
|
|
||||||
|
class SACPolicy(DDPGPolicy):
|
||||||
|
"""docstring for SACPolicy"""
|
||||||
|
def __init__(self, actor, actor_optim, critic, critic_optim,
|
||||||
|
tau, gamma, ):
|
||||||
|
super().__init__()
|
||||||
|
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||||
|
self.actor_old.eval()
|
||||||
|
self.actor_optim = actor_optim
|
||||||
|
self.critic, self.critic_old = critic, deepcopy(critic)
|
||||||
|
self.critic_old.eval()
|
||||||
|
self.critic_optim = critic_optim
|
||||||
|
|
||||||
|
def __call__(self, batch, state=None):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def learn(self, batch, batch_size=None, repeat=1):
|
||||||
|
pass
|
95
tianshou/policy/td3.py
Normal file
95
tianshou/policy/td3.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from copy import deepcopy
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from tianshou.policy import DDPGPolicy
|
||||||
|
|
||||||
|
|
||||||
|
class TD3Policy(DDPGPolicy):
|
||||||
|
"""docstring for TD3Policy"""
|
||||||
|
def __init__(self, actor, actor_optim, critic1, critic1_optim,
|
||||||
|
critic2, critic2_optim, tau=0.005, gamma=0.99,
|
||||||
|
exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2,
|
||||||
|
noise_clip=0.5, action_range=None, reward_normalization=True):
|
||||||
|
super().__init__(actor, actor_optim, None, None,
|
||||||
|
tau, gamma, exploration_noise, action_range,
|
||||||
|
reward_normalization)
|
||||||
|
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
|
||||||
|
self.critic1_old.eval()
|
||||||
|
self.critic1_optim = critic1_optim
|
||||||
|
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
|
||||||
|
self.critic2_old.eval()
|
||||||
|
self.critic2_optim = critic2_optim
|
||||||
|
self._policy_noise = policy_noise
|
||||||
|
self._freq = update_actor_freq
|
||||||
|
self._noise_clip = noise_clip
|
||||||
|
self._cnt = 0
|
||||||
|
self._last = 0
|
||||||
|
self.__eps = np.finfo(np.float32).eps.item()
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
self.training = True
|
||||||
|
self.actor.train()
|
||||||
|
self.critic1.train()
|
||||||
|
self.critic2.train()
|
||||||
|
|
||||||
|
def eval(self):
|
||||||
|
self.training = False
|
||||||
|
self.actor.eval()
|
||||||
|
self.critic1.eval()
|
||||||
|
self.critic2.eval()
|
||||||
|
|
||||||
|
def sync_weight(self):
|
||||||
|
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
||||||
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||||
|
for o, n in zip(
|
||||||
|
self.critic1_old.parameters(), self.critic1.parameters()):
|
||||||
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||||
|
for o, n in zip(
|
||||||
|
self.critic2_old.parameters(), self.critic2.parameters()):
|
||||||
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||||
|
|
||||||
|
def learn(self, batch, batch_size=None, repeat=1):
|
||||||
|
a_ = self(batch, model='actor_old', input='obs_next').act
|
||||||
|
dev = a_.device
|
||||||
|
noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise
|
||||||
|
if self._noise_clip >= 0:
|
||||||
|
noise = noise.clamp(-self._noise_clip, self._noise_clip)
|
||||||
|
a_ += noise
|
||||||
|
if self._range:
|
||||||
|
a_ = a_.clamp(self._range[0], self._range[1])
|
||||||
|
target_q = torch.min(
|
||||||
|
self.critic1_old(batch.obs_next, a_),
|
||||||
|
self.critic2_old(batch.obs_next, a_))
|
||||||
|
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
|
||||||
|
if self._rew_norm:
|
||||||
|
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
|
||||||
|
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
|
||||||
|
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
|
||||||
|
# critic 1
|
||||||
|
current_q1 = self.critic1(batch.obs, batch.act)
|
||||||
|
critic1_loss = F.mse_loss(current_q1, target_q)
|
||||||
|
self.critic1_optim.zero_grad()
|
||||||
|
critic1_loss.backward()
|
||||||
|
self.critic1_optim.step()
|
||||||
|
# critic 2
|
||||||
|
current_q2 = self.critic2(batch.obs, batch.act)
|
||||||
|
critic2_loss = F.mse_loss(current_q2, target_q)
|
||||||
|
self.critic2_optim.zero_grad()
|
||||||
|
critic2_loss.backward()
|
||||||
|
self.critic2_optim.step()
|
||||||
|
if self._cnt % self._freq == 0:
|
||||||
|
actor_loss = -self.critic1(
|
||||||
|
batch.obs, self(batch, eps=0).act).mean()
|
||||||
|
self.actor_optim.zero_grad()
|
||||||
|
actor_loss.backward()
|
||||||
|
self._last = actor_loss.detach().cpu().numpy()
|
||||||
|
self.actor_optim.step()
|
||||||
|
self.sync_weight()
|
||||||
|
self._cnt += 1
|
||||||
|
return {
|
||||||
|
'loss/actor': self._last,
|
||||||
|
'loss/critic1': critic1_loss.detach().cpu().numpy(),
|
||||||
|
'loss/critic2': critic2_loss.detach().cpu().numpy(),
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user