modified the network
This commit is contained in:
parent
5f923f565e
commit
493d361022
@ -4,13 +4,6 @@ import time
|
||||
import multi_gpu
|
||||
import tensorflow.contrib.layers as layers
|
||||
|
||||
data = np.load("data.npz")
|
||||
boards = data["boards"]
|
||||
wins = data["wins"]
|
||||
ps = data["ps"]
|
||||
print (boards.shape)
|
||||
print (wins.shape)
|
||||
print (ps.shape)
|
||||
def residual_block(input, is_training):
|
||||
normalizer_params = {'is_training': is_training,
|
||||
'updates_collections': None}
|
||||
@ -44,7 +37,6 @@ def value_heads(input, is_training):
|
||||
h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
return h
|
||||
|
||||
|
||||
x = tf.placeholder(tf.float32,shape=[None,19,19,17])
|
||||
is_training = tf.placeholder(tf.bool, shape=[])
|
||||
z = tf.placeholder(tf.float32, shape=[None, 1])
|
||||
@ -62,6 +54,14 @@ train_op = tf.train.RMSPropOptimizer(1e-2).minimize(total_loss)
|
||||
|
||||
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
|
||||
saver = tf.train.Saver(max_to_keep=10, var_list=var_list)
|
||||
def train():
|
||||
data = np.load("data.npz")
|
||||
boards = data["boards"]
|
||||
wins = data["wins"]
|
||||
ps = data["ps"]
|
||||
print (boards.shape)
|
||||
print (wins.shape)
|
||||
print (ps.shape)
|
||||
epochs = 100
|
||||
batch_size = 32
|
||||
batch_num = boards.shape[0] // batch_size
|
||||
@ -93,3 +93,15 @@ with multi_gpu.create_session() as sess:
|
||||
if iter % 20 == 0:
|
||||
save_path = "Epoch{}.Iteration{}.ckpt".format(epoch, iter)
|
||||
saver.save(sess, result_path + save_path)
|
||||
|
||||
def forward(board):
|
||||
result_path = "./results/"
|
||||
with multi_gpu.create_session() as sess:
|
||||
sess.run(tf.global_variables_initializer())
|
||||
ckpt_file = tf.train.latest_checkpoint(result_path)
|
||||
if ckpt_file is not None:
|
||||
print('Restoring model from {}...'.format(ckpt_file))
|
||||
saver.restore(sess, ckpt_file)
|
||||
else:
|
||||
raise ValueError("No model loaded")
|
||||
return sess.run([p,v], feed_dict={x:board})
|
Loading…
x
Reference in New Issue
Block a user