Add example from README (with minor updates)
This commit is contained in:
parent
39f3ba2266
commit
62d58faa02
78
examples/discrete/discrete_dqn.py
Normal file
78
examples/discrete/discrete_dqn.py
Normal file
@ -0,0 +1,78 @@
|
||||
import gymnasium as gym
|
||||
import torch
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
import tianshou as ts
|
||||
|
||||
|
||||
def main():
|
||||
task = "CartPole-v1"
|
||||
lr, epoch, batch_size = 1e-3, 10, 64
|
||||
train_num, test_num = 10, 100
|
||||
gamma, n_step, target_freq = 0.9, 3, 320
|
||||
buffer_size = 20000
|
||||
eps_train, eps_test = 0.1, 0.05
|
||||
step_per_epoch, step_per_collect = 10000, 10
|
||||
logger = ts.utils.TensorboardLogger(SummaryWriter("log/dqn")) # TensorBoard is supported!
|
||||
# For other loggers: https://tianshou.readthedocs.io/en/master/tutorials/logger.html
|
||||
|
||||
# you can also try with SubprocVectorEnv
|
||||
train_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(train_num)])
|
||||
test_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(test_num)])
|
||||
|
||||
from tianshou.utils.net.common import Net
|
||||
|
||||
# you can define other net by following the API:
|
||||
# https://tianshou.readthedocs.io/en/master/tutorials/dqn.html#build-the-network
|
||||
env = gym.make(task, render_mode="human")
|
||||
state_shape = env.observation_space.shape or env.observation_space.n
|
||||
action_shape = env.action_space.shape or env.action_space.n
|
||||
net = Net(state_shape=state_shape, action_shape=action_shape, hidden_sizes=[128, 128, 128])
|
||||
optim = torch.optim.Adam(net.parameters(), lr=lr)
|
||||
|
||||
policy = ts.policy.DQNPolicy(
|
||||
model=net,
|
||||
optim=optim,
|
||||
discount_factor=gamma,
|
||||
action_space=env.action_space,
|
||||
estimation_step=n_step,
|
||||
target_update_freq=target_freq,
|
||||
)
|
||||
train_collector = ts.data.Collector(
|
||||
policy,
|
||||
train_envs,
|
||||
ts.data.VectorReplayBuffer(buffer_size, train_num),
|
||||
exploration_noise=True,
|
||||
)
|
||||
test_collector = ts.data.Collector(
|
||||
policy,
|
||||
test_envs,
|
||||
exploration_noise=True,
|
||||
) # because DQN uses epsilon-greedy method
|
||||
|
||||
result = ts.trainer.OffpolicyTrainer(
|
||||
policy=policy,
|
||||
train_collector=train_collector,
|
||||
test_collector=test_collector,
|
||||
max_epoch=epoch,
|
||||
step_per_epoch=step_per_epoch,
|
||||
step_per_collect=step_per_collect,
|
||||
episode_per_test=test_num,
|
||||
batch_size=batch_size,
|
||||
update_per_step=1 / step_per_collect,
|
||||
train_fn=lambda epoch, env_step: policy.set_eps(eps_train),
|
||||
test_fn=lambda epoch, env_step: policy.set_eps(eps_test),
|
||||
stop_fn=lambda mean_rewards: mean_rewards >= env.spec.reward_threshold,
|
||||
logger=logger,
|
||||
).run()
|
||||
print(f"Finished training in {result.timing.total_time} seconds")
|
||||
|
||||
# watch performance
|
||||
policy.eval()
|
||||
policy.set_eps(eps_test)
|
||||
collector = ts.data.Collector(policy, env, exploration_noise=True)
|
||||
collector.collect(n_episode=100, render=1 / 35)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user