minor fixes. proceed to refactor replay to use lists as in batch.
This commit is contained in:
parent
7711686bc6
commit
87889d766c
@ -106,6 +106,7 @@ Note: install openai/gym first to run the Atari environment; note that interface
|
|||||||
|
|
||||||
Without preprocessing and other tricks, this example will not train to any meaningful results. Codes should past two tests: individual module test and run through this example code.
|
Without preprocessing and other tricks, this example will not train to any meaningful results. Codes should past two tests: individual module test and run through this example code.
|
||||||
|
|
||||||
## Dependency
|
## Dependencies
|
||||||
Tensorflow (Version >= 1.4)
|
TensorFlow (Version >= 1.4)
|
||||||
Gym
|
|
||||||
|
gym
|
||||||
|
87
examples/dqn_replay.py
Normal file
87
examples/dqn_replay.py
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
import gym
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
|
||||||
|
# our lib imports here! It's ok to append path in examples
|
||||||
|
import sys
|
||||||
|
sys.path.append('..')
|
||||||
|
from tianshou.core import losses
|
||||||
|
# from tianshou.data.batch import Batch
|
||||||
|
import tianshou.data.advantage_estimation as advantage_estimation
|
||||||
|
import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
|
import tianshou.core.value_function.action_value as value_function
|
||||||
|
|
||||||
|
import tianshou.data.replay as replay
|
||||||
|
import tianshou.data.data_collector as data_collector
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: why this solves cartpole even without training?
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
env = gym.make('CartPole-v0')
|
||||||
|
observation_dim = env.observation_space.shape
|
||||||
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
|
clip_param = 0.2
|
||||||
|
num_batches = 10
|
||||||
|
batch_size = 512
|
||||||
|
|
||||||
|
seed = 0
|
||||||
|
np.random.seed(seed)
|
||||||
|
tf.set_random_seed(seed)
|
||||||
|
|
||||||
|
### 1. build network with pure tf
|
||||||
|
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
|
||||||
|
|
||||||
|
def my_network():
|
||||||
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
|
action_values = tf.layers.dense(net, action_dim, activation=None)
|
||||||
|
|
||||||
|
return None, action_values # no policy head
|
||||||
|
|
||||||
|
### 2. build policy, loss, optimizer
|
||||||
|
dqn = value_function.DQN(my_network, observation_placeholder=observation_ph, weight_update=100)
|
||||||
|
pi = policy.DQN(dqn)
|
||||||
|
|
||||||
|
dqn_loss = losses.qlearning(dqn)
|
||||||
|
|
||||||
|
total_loss = dqn_loss
|
||||||
|
optimizer = tf.train.AdamOptimizer(1e-4)
|
||||||
|
train_op = optimizer.minimize(total_loss, var_list=dqn.trainable_variables)
|
||||||
|
|
||||||
|
### 3. define data collection
|
||||||
|
replay_buffer = replay()
|
||||||
|
|
||||||
|
data_collector = data_collector(env, pi, [advantage_estimation.nstep_q_return(1, dqn)], [dqn], replay_buffer)
|
||||||
|
|
||||||
|
### 4. start training
|
||||||
|
config = tf.ConfigProto()
|
||||||
|
config.gpu_options.allow_growth = True
|
||||||
|
with tf.Session(config=config) as sess:
|
||||||
|
sess.run(tf.global_variables_initializer())
|
||||||
|
|
||||||
|
# assign actor to pi_old
|
||||||
|
pi.sync_weights() # TODO: automate this for policies with target network
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
for i in range(100):
|
||||||
|
# collect data
|
||||||
|
data_collector.collect(num_episodes=50)
|
||||||
|
|
||||||
|
# print current return
|
||||||
|
print('Epoch {}:'.format(i))
|
||||||
|
data_collector.statistics()
|
||||||
|
|
||||||
|
# update network
|
||||||
|
for _ in range(num_batches):
|
||||||
|
feed_dict = data_collector.next_batch(batch_size)
|
||||||
|
sess.run(train_op, feed_dict=feed_dict)
|
||||||
|
|
||||||
|
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))
|
@ -158,4 +158,3 @@ class QLearningTarget:
|
|||||||
data['rewards'] = np.array(rewards)
|
data['rewards'] = np.array(rewards)
|
||||||
|
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
@ -3,7 +3,7 @@ import tensorflow as tf
|
|||||||
from collections import deque
|
from collections import deque
|
||||||
from math import fabs
|
from math import fabs
|
||||||
|
|
||||||
from tianshou.data.replay_buffer.buffer import ReplayBuffer
|
from .buffer import ReplayBuffer
|
||||||
|
|
||||||
|
|
||||||
class NaiveExperience(ReplayBuffer):
|
class NaiveExperience(ReplayBuffer):
|
||||||
|
@ -1,9 +1,3 @@
|
|||||||
#!/usr/bin/python
|
|
||||||
# -*- encoding=utf-8 -*-
|
|
||||||
# author: Ian
|
|
||||||
# e-mail: stmayue@gmail.com
|
|
||||||
# description:
|
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
import math
|
import math
|
||||||
import random
|
import random
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
from tianshou.data.replay_buffer.naive import NaiveExperience
|
from .naive import NaiveExperience
|
||||||
from tianshou.data.replay_buffer.proportional import PropotionalExperience
|
from .proportional import PropotionalExperience
|
||||||
from tianshou.data.replay_buffer.rank_based import RankBasedExperience
|
from .rank_based import RankBasedExperience
|
||||||
|
|
||||||
|
|
||||||
def get_replay_buffer(name, env, policy, qnet, target_qnet, conf):
|
def get_replay_buffer(name, env, policy, qnet, target_qnet, conf):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user