Robust conversion from/to numpy/pytorch (#63)
* Enable to convert Batch data back to torch. * Add torch converter to collector. * Fix * Move to_numpy/to_torch convert in dedicated utils.py. * Use to_numpy/to_torch to convert arrays. * fix lint * fix * Add unit test to check Batch from/to numpy. * Fix Batch over Batch. Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
This commit is contained in:
parent
b5093ecb56
commit
8af7196a9a
@ -1,4 +1,5 @@
|
||||
import pytest
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from tianshou.data import Batch
|
||||
@ -29,6 +30,20 @@ def test_batch_over_batch():
|
||||
assert batch2[-1].b.b == 0
|
||||
|
||||
|
||||
def test_batch_from_to_numpy_without_copy():
|
||||
batch = Batch(a=np.ones((1,)), b=Batch(c=np.ones((1,))))
|
||||
a_mem_addr_orig = batch["a"].__array_interface__['data'][0]
|
||||
c_mem_addr_orig = batch["b"]["c"].__array_interface__['data'][0]
|
||||
batch.to_torch()
|
||||
assert isinstance(batch["a"], torch.Tensor)
|
||||
assert isinstance(batch["b"]["c"], torch.Tensor)
|
||||
batch.to_numpy()
|
||||
a_mem_addr_new = batch["a"].__array_interface__['data'][0]
|
||||
c_mem_addr_new = batch["b"]["c"].__array_interface__['data'][0]
|
||||
assert a_mem_addr_new == a_mem_addr_orig
|
||||
assert c_mem_addr_new == c_mem_addr_orig
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_batch()
|
||||
test_batch_over_batch()
|
||||
|
@ -1,12 +1,15 @@
|
||||
from tianshou.data.batch import Batch
|
||||
from tianshou.data.utils import to_numpy, to_torch
|
||||
from tianshou.data.buffer import ReplayBuffer, \
|
||||
ListReplayBuffer, PrioritizedReplayBuffer
|
||||
from tianshou.data.collector import Collector
|
||||
|
||||
__all__ = [
|
||||
'Batch',
|
||||
'to_numpy',
|
||||
'to_torch',
|
||||
'ReplayBuffer',
|
||||
'ListReplayBuffer',
|
||||
'PrioritizedReplayBuffer',
|
||||
'Collector',
|
||||
'Collector'
|
||||
]
|
||||
|
@ -141,13 +141,31 @@ class Batch:
|
||||
return self.__getattr__(k)
|
||||
return d
|
||||
|
||||
def to_numpy(self) -> np.ndarray:
|
||||
def to_numpy(self) -> None:
|
||||
"""Change all torch.Tensor to numpy.ndarray. This is an inplace
|
||||
operation.
|
||||
"""
|
||||
for k, v in self.__dict__.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
self.__dict__[k] = v.cpu().numpy()
|
||||
elif isinstance(v, Batch):
|
||||
v.to_numpy()
|
||||
|
||||
def to_torch(self,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Union[str, int] = 'cpu'
|
||||
) -> None:
|
||||
"""Change all numpy.ndarray to torch.Tensor. This is an inplace
|
||||
operation.
|
||||
"""
|
||||
for k, v in self.__dict__.items():
|
||||
if isinstance(v, np.ndarray):
|
||||
v = torch.from_numpy(v).to(device)
|
||||
if dtype is not None:
|
||||
v = v.type(dtype)
|
||||
self.__dict__[k] = v
|
||||
elif isinstance(v, Batch):
|
||||
v.to_torch()
|
||||
|
||||
def append(self, batch: 'Batch') -> None:
|
||||
"""Append a :class:`~tianshou.data.Batch` object to current batch."""
|
||||
|
@ -8,7 +8,7 @@ from typing import Any, Dict, List, Union, Optional, Callable
|
||||
from tianshou.utils import MovAvg
|
||||
from tianshou.env import BaseVectorEnv
|
||||
from tianshou.policy import BasePolicy
|
||||
from tianshou.data import Batch, ReplayBuffer, ListReplayBuffer
|
||||
from tianshou.data import Batch, ReplayBuffer, ListReplayBuffer, to_numpy
|
||||
|
||||
|
||||
class Collector(object):
|
||||
@ -201,21 +201,6 @@ class Collector(object):
|
||||
elif isinstance(self.state, (torch.Tensor, np.ndarray)):
|
||||
self.state[id] = 0
|
||||
|
||||
def _to_numpy(self, x: Union[
|
||||
torch.Tensor, dict, Batch, np.ndarray]) -> None:
|
||||
"""Return an object without torch.Tensor."""
|
||||
if isinstance(x, torch.Tensor):
|
||||
return x.cpu().numpy()
|
||||
elif isinstance(x, dict):
|
||||
for k in x:
|
||||
if isinstance(x[k], torch.Tensor):
|
||||
x[k] = x[k].cpu().numpy()
|
||||
return x
|
||||
elif isinstance(x, Batch):
|
||||
x.to_numpy()
|
||||
return x
|
||||
return x
|
||||
|
||||
def collect(self,
|
||||
n_step: int = 0,
|
||||
n_episode: Union[int, List[int]] = 0,
|
||||
@ -270,9 +255,9 @@ class Collector(object):
|
||||
with torch.no_grad():
|
||||
result = self.policy(batch, self.state)
|
||||
self.state = result.get('state', None)
|
||||
self._policy = self._to_numpy(result.policy) \
|
||||
self._policy = to_numpy(result.policy) \
|
||||
if hasattr(result, 'policy') else [{}] * self.env_num
|
||||
self._act = self._to_numpy(result.act)
|
||||
self._act = to_numpy(result.act)
|
||||
obs_next, self._rew, self._done, self._info = self.env.step(
|
||||
self._act if self._multi_env else self._act[0])
|
||||
if not self._multi_env:
|
||||
|
36
tianshou/data/utils.py
Normal file
36
tianshou/data/utils.py
Normal file
@ -0,0 +1,36 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from typing import Union, Optional
|
||||
|
||||
from tianshou.data import Batch
|
||||
|
||||
|
||||
def to_numpy(x: Union[
|
||||
torch.Tensor, dict, Batch, np.ndarray]) -> Union[
|
||||
dict, Batch, np.ndarray]:
|
||||
"""Return an object without torch.Tensor."""
|
||||
if isinstance(x, torch.Tensor):
|
||||
x = x.detach().cpu().numpy()
|
||||
elif isinstance(x, dict):
|
||||
for k, v in x.items():
|
||||
x[k] = to_numpy(v)
|
||||
elif isinstance(x, Batch):
|
||||
x.to_numpy()
|
||||
return x
|
||||
|
||||
|
||||
def to_torch(x: Union[torch.Tensor, dict, Batch, np.ndarray],
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Union[str, int] = 'cpu'
|
||||
) -> Union[dict, Batch, torch.Tensor]:
|
||||
"""Return an object without np.ndarray."""
|
||||
if isinstance(x, np.ndarray):
|
||||
x = torch.from_numpy(x).to(device)
|
||||
if dtype is not None:
|
||||
x = x.type(dtype)
|
||||
elif isinstance(x, dict):
|
||||
for k, v in x.items():
|
||||
x[k] = to_torch(v, dtype, device)
|
||||
elif isinstance(x, Batch):
|
||||
x.to_torch()
|
||||
return x
|
@ -3,7 +3,7 @@ import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from typing import Dict, Union, Optional
|
||||
|
||||
from tianshou.data import Batch
|
||||
from tianshou.data import Batch, to_torch
|
||||
from tianshou.policy import BasePolicy
|
||||
|
||||
|
||||
@ -46,11 +46,11 @@ class ImitationPolicy(BasePolicy):
|
||||
self.optim.zero_grad()
|
||||
if self.mode == 'continuous':
|
||||
a = self(batch).act
|
||||
a_ = torch.tensor(batch.act, dtype=torch.float, device=a.device)
|
||||
a_ = to_torch(batch.act, dtype=torch.float, device=a.device)
|
||||
loss = F.mse_loss(a, a_)
|
||||
elif self.mode == 'discrete': # classification
|
||||
a = self(batch).logits
|
||||
a_ = torch.tensor(batch.act, dtype=torch.long, device=a.device)
|
||||
a_ = to_torch(batch.act, dtype=torch.long, device=a.device)
|
||||
loss = F.nll_loss(a, a_)
|
||||
loss.backward()
|
||||
self.optim.step()
|
||||
|
@ -5,7 +5,7 @@ import torch.nn.functional as F
|
||||
from typing import Dict, List, Union, Optional
|
||||
|
||||
from tianshou.policy import PGPolicy
|
||||
from tianshou.data import Batch, ReplayBuffer
|
||||
from tianshou.data import Batch, ReplayBuffer, to_torch, to_numpy
|
||||
|
||||
|
||||
class A2CPolicy(PGPolicy):
|
||||
@ -64,7 +64,7 @@ class A2CPolicy(PGPolicy):
|
||||
v_ = []
|
||||
with torch.no_grad():
|
||||
for b in batch.split(self._batch, shuffle=False):
|
||||
v_.append(self.critic(b.obs_next).detach().cpu().numpy())
|
||||
v_.append(to_numpy(self.critic(b.obs_next)))
|
||||
v_ = np.concatenate(v_, axis=0)
|
||||
return self.compute_episodic_return(
|
||||
batch, v_, gamma=self._gamma, gae_lambda=self._lambda)
|
||||
@ -106,8 +106,8 @@ class A2CPolicy(PGPolicy):
|
||||
self.optim.zero_grad()
|
||||
dist = self(b).dist
|
||||
v = self.critic(b.obs)
|
||||
a = torch.tensor(b.act, device=v.device)
|
||||
r = torch.tensor(b.returns, device=v.device)
|
||||
a = to_torch(b.act, device=v.device)
|
||||
r = to_torch(b.returns, device=v.device)
|
||||
a_loss = -(dist.log_prob(a) * (r - v).detach()).mean()
|
||||
vf_loss = F.mse_loss(r[:, None], v)
|
||||
ent_loss = dist.entropy().mean()
|
||||
|
@ -6,7 +6,7 @@ from typing import Dict, Tuple, Union, Optional
|
||||
|
||||
from tianshou.policy import BasePolicy
|
||||
# from tianshou.exploration import OUNoise
|
||||
from tianshou.data import Batch, ReplayBuffer
|
||||
from tianshou.data import Batch, ReplayBuffer, to_torch
|
||||
|
||||
|
||||
class DDPGPolicy(BasePolicy):
|
||||
@ -135,7 +135,7 @@ class DDPGPolicy(BasePolicy):
|
||||
eps = self._eps
|
||||
if eps > 0:
|
||||
# noise = np.random.normal(0, eps, size=logits.shape)
|
||||
# logits += torch.tensor(noise, device=logits.device)
|
||||
# logits += to_torch(noise, device=logits.device)
|
||||
# noise = self.noise(logits.shape, eps)
|
||||
logits += torch.randn(
|
||||
size=logits.shape, device=logits.device) * eps
|
||||
@ -147,10 +147,10 @@ class DDPGPolicy(BasePolicy):
|
||||
target_q = self.critic_old(batch.obs_next, self(
|
||||
batch, model='actor_old', input='obs_next', eps=0).act)
|
||||
dev = target_q.device
|
||||
rew = torch.tensor(batch.rew,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
done = torch.tensor(batch.done,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
rew = to_torch(batch.rew,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
done = to_torch(batch.done,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
target_q = (rew + (1. - done) * self._gamma * target_q)
|
||||
current_q = self.critic(batch.obs, batch.act)
|
||||
critic_loss = F.mse_loss(current_q, target_q)
|
||||
|
@ -5,7 +5,8 @@ import torch.nn.functional as F
|
||||
from typing import Dict, Union, Optional
|
||||
|
||||
from tianshou.policy import BasePolicy
|
||||
from tianshou.data import Batch, ReplayBuffer, PrioritizedReplayBuffer
|
||||
from tianshou.data import Batch, ReplayBuffer, PrioritizedReplayBuffer, \
|
||||
to_torch, to_numpy
|
||||
|
||||
|
||||
class DQNPolicy(BasePolicy):
|
||||
@ -96,12 +97,12 @@ class DQNPolicy(BasePolicy):
|
||||
target_q = self(
|
||||
terminal_data, model='model_old', input='obs_next').logits
|
||||
if isinstance(target_q, torch.Tensor):
|
||||
target_q = target_q.detach().cpu().numpy()
|
||||
target_q = to_numpy(target_q)
|
||||
target_q = target_q[np.arange(len(a)), a]
|
||||
else:
|
||||
target_q = self(terminal_data, input='obs_next').logits
|
||||
if isinstance(target_q, torch.Tensor):
|
||||
target_q = target_q.detach().cpu().numpy()
|
||||
target_q = to_numpy(target_q)
|
||||
target_q = target_q.max(axis=1)
|
||||
target_q[gammas != self._n_step] = 0
|
||||
returns += (self._gamma ** gammas) * target_q
|
||||
@ -111,11 +112,11 @@ class DQNPolicy(BasePolicy):
|
||||
q = q[np.arange(len(q)), batch.act]
|
||||
r = batch.returns
|
||||
if isinstance(r, np.ndarray):
|
||||
r = torch.tensor(r, device=q.device, dtype=q.dtype)
|
||||
r = to_torch(r, device=q.device, dtype=q.dtype)
|
||||
td = r - q
|
||||
buffer.update_weight(indice, td.detach().cpu().numpy())
|
||||
impt_weight = torch.tensor(batch.impt_weight,
|
||||
device=q.device, dtype=torch.float)
|
||||
buffer.update_weight(indice, to_numpy(td))
|
||||
impt_weight = to_torch(batch.impt_weight,
|
||||
device=q.device, dtype=torch.float)
|
||||
loss = (td.pow(2) * impt_weight).mean()
|
||||
if not hasattr(batch, 'loss'):
|
||||
batch.loss = loss
|
||||
@ -147,7 +148,7 @@ class DQNPolicy(BasePolicy):
|
||||
model = getattr(self, model)
|
||||
obs = getattr(batch, input)
|
||||
q, h = model(obs, state=state, info=batch.info)
|
||||
act = q.max(dim=1)[1].detach().cpu().numpy()
|
||||
act = to_numpy(q.max(dim=1)[1])
|
||||
# add eps to act
|
||||
if eps is None:
|
||||
eps = self.eps
|
||||
@ -168,7 +169,7 @@ class DQNPolicy(BasePolicy):
|
||||
q = q[np.arange(len(q)), batch.act]
|
||||
r = batch.returns
|
||||
if isinstance(r, np.ndarray):
|
||||
r = torch.tensor(r, device=q.device, dtype=q.dtype)
|
||||
r = to_torch(r, device=q.device, dtype=q.dtype)
|
||||
loss = F.mse_loss(q, r)
|
||||
loss.backward()
|
||||
self.optim.step()
|
||||
|
@ -3,7 +3,7 @@ import numpy as np
|
||||
from typing import Dict, List, Union, Optional
|
||||
|
||||
from tianshou.policy import BasePolicy
|
||||
from tianshou.data import Batch, ReplayBuffer
|
||||
from tianshou.data import Batch, ReplayBuffer, to_torch
|
||||
|
||||
|
||||
class PGPolicy(BasePolicy):
|
||||
@ -88,8 +88,8 @@ class PGPolicy(BasePolicy):
|
||||
for b in batch.split(batch_size):
|
||||
self.optim.zero_grad()
|
||||
dist = self(b).dist
|
||||
a = torch.tensor(b.act, device=dist.logits.device)
|
||||
r = torch.tensor(b.returns, device=dist.logits.device)
|
||||
a = to_torch(b.act, device=dist.logits.device)
|
||||
r = to_torch(b.returns, device=dist.logits.device)
|
||||
loss = -(dist.log_prob(a) * r).sum()
|
||||
loss.backward()
|
||||
self.optim.step()
|
||||
|
@ -4,7 +4,7 @@ from torch import nn
|
||||
from typing import Dict, List, Tuple, Union, Optional
|
||||
|
||||
from tianshou.policy import PGPolicy
|
||||
from tianshou.data import Batch, ReplayBuffer
|
||||
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch
|
||||
|
||||
|
||||
class PPOPolicy(PGPolicy):
|
||||
@ -88,7 +88,7 @@ class PPOPolicy(PGPolicy):
|
||||
with torch.no_grad():
|
||||
for b in batch.split(self._batch, shuffle=False):
|
||||
v_.append(self.critic(b.obs_next))
|
||||
v_ = torch.cat(v_, dim=0).cpu().numpy()
|
||||
v_ = to_numpy(torch.cat(v_, dim=0))
|
||||
return self.compute_episodic_return(
|
||||
batch, v_, gamma=self._gamma, gae_lambda=self._lambda)
|
||||
|
||||
@ -129,12 +129,12 @@ class PPOPolicy(PGPolicy):
|
||||
for b in batch.split(batch_size, shuffle=False):
|
||||
v.append(self.critic(b.obs))
|
||||
old_log_prob.append(self(b).dist.log_prob(
|
||||
torch.tensor(b.act, device=v[0].device)))
|
||||
to_torch(b.act, device=v[0].device)))
|
||||
batch.v = torch.cat(v, dim=0) # old value
|
||||
dev = batch.v.device
|
||||
batch.act = torch.tensor(batch.act, dtype=torch.float, device=dev)
|
||||
batch.act = to_torch(batch.act, dtype=torch.float, device=dev)
|
||||
batch.logp_old = torch.cat(old_log_prob, dim=0)
|
||||
batch.returns = torch.tensor(
|
||||
batch.returns = to_torch(
|
||||
batch.returns, dtype=torch.float, device=dev
|
||||
).reshape(batch.v.shape)
|
||||
if self._rew_norm:
|
||||
|
@ -4,7 +4,7 @@ from copy import deepcopy
|
||||
import torch.nn.functional as F
|
||||
from typing import Dict, Tuple, Union, Optional
|
||||
|
||||
from tianshou.data import Batch
|
||||
from tianshou.data import Batch, to_torch
|
||||
from tianshou.policy import DDPGPolicy
|
||||
from tianshou.policy.dist import DiagGaussian
|
||||
|
||||
@ -110,15 +110,15 @@ class SACPolicy(DDPGPolicy):
|
||||
obs_next_result = self(batch, input='obs_next')
|
||||
a_ = obs_next_result.act
|
||||
dev = a_.device
|
||||
batch.act = torch.tensor(batch.act, dtype=torch.float, device=dev)
|
||||
batch.act = to_torch(batch.act, dtype=torch.float, device=dev)
|
||||
target_q = torch.min(
|
||||
self.critic1_old(batch.obs_next, a_),
|
||||
self.critic2_old(batch.obs_next, a_),
|
||||
) - self._alpha * obs_next_result.log_prob
|
||||
rew = torch.tensor(batch.rew,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
done = torch.tensor(batch.done,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
rew = to_torch(batch.rew,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
done = to_torch(batch.done,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
target_q = (rew + (1. - done) * self._gamma * target_q)
|
||||
# critic 1
|
||||
current_q1 = self.critic1(batch.obs, batch.act)
|
||||
|
@ -3,7 +3,7 @@ from copy import deepcopy
|
||||
import torch.nn.functional as F
|
||||
from typing import Dict, Tuple, Optional
|
||||
|
||||
from tianshou.data import Batch
|
||||
from tianshou.data import Batch, to_torch
|
||||
from tianshou.policy import DDPGPolicy
|
||||
|
||||
|
||||
@ -112,10 +112,10 @@ class TD3Policy(DDPGPolicy):
|
||||
target_q = torch.min(
|
||||
self.critic1_old(batch.obs_next, a_),
|
||||
self.critic2_old(batch.obs_next, a_))
|
||||
rew = torch.tensor(batch.rew,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
done = torch.tensor(batch.done,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
rew = to_torch(batch.rew,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
done = to_torch(batch.done,
|
||||
dtype=torch.float, device=dev)[:, None]
|
||||
target_q = (rew + (1. - done) * self._gamma * target_q)
|
||||
# critic 1
|
||||
current_q1 = self.critic1(batch.obs, batch.act)
|
||||
|
Loading…
x
Reference in New Issue
Block a user