merge Go and GoEnv finallygit status!
This commit is contained in:
parent
0456e0c15e
commit
db40994e11
@ -183,7 +183,7 @@ class GTPEngine():
|
||||
return 'unknown player', False
|
||||
|
||||
def cmd_get_score(self, args, **kwargs):
|
||||
return self._game.executor.executor_get_score(), None
|
||||
return self._game.game_engine.executor_get_score(), None
|
||||
|
||||
def cmd_show_board(self, args, **kwargs):
|
||||
return self._game.board, True
|
||||
|
@ -9,16 +9,13 @@ import utils
|
||||
import copy
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import sys
|
||||
import sys, os
|
||||
import go
|
||||
import network_small
|
||||
import strategy
|
||||
from collections import deque
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
|
||||
from tianshou.core.mcts.mcts import MCTS
|
||||
|
||||
import Network
|
||||
#from strategy import strategy
|
||||
|
||||
class Game:
|
||||
'''
|
||||
Load the real game and trained weights.
|
||||
@ -34,15 +31,11 @@ class Game:
|
||||
self.latest_boards = deque(maxlen=8)
|
||||
for _ in range(8):
|
||||
self.latest_boards.append(self.board)
|
||||
|
||||
self.executor = go.Go(game=self)
|
||||
#self.strategy = strategy(checkpoint_path)
|
||||
|
||||
self.simulator = strategy.GoEnv(game=self)
|
||||
self.net = network_small.Network()
|
||||
self.sess = self.net.forward(checkpoint_path)
|
||||
self.evaluator = lambda state: self.sess.run([tf.nn.softmax(self.net.p), self.net.v],
|
||||
feed_dict={self.net.x: state, self.net.is_training: False})
|
||||
self.game_engine = go.Go(game=self)
|
||||
|
||||
def _flatten(self, vertex):
|
||||
x, y = vertex
|
||||
@ -79,10 +72,10 @@ class Game:
|
||||
|
||||
def think(self, latest_boards, color):
|
||||
# TODO : using copy is right, or should we change to deepcopy?
|
||||
self.simulator.simulate_latest_boards = copy.copy(latest_boards)
|
||||
self.simulator.simulate_board = copy.copy(latest_boards[-1])
|
||||
nn_input = self.generate_nn_input(self.simulator.simulate_latest_boards, color)
|
||||
mcts = MCTS(self.simulator, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1)
|
||||
self.game_engine.simulate_latest_boards = copy.copy(latest_boards)
|
||||
self.game_engine.simulate_board = copy.copy(latest_boards[-1])
|
||||
nn_input = self.generate_nn_input(self.game_engine.simulate_latest_boards, color)
|
||||
mcts = MCTS(self.game_engine, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1)
|
||||
temp = 1
|
||||
prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)
|
||||
choice = np.random.choice(self.size ** 2 + 1, 1, p=prob).tolist()[0]
|
||||
@ -96,7 +89,7 @@ class Game:
|
||||
# this function can be called directly to play the opponent's move
|
||||
if vertex == utils.PASS:
|
||||
return True
|
||||
res = self.executor.executor_do_move(color, vertex)
|
||||
res = self.game_engine.executor_do_move(color, vertex)
|
||||
return res
|
||||
|
||||
def think_play_move(self, color):
|
||||
|
@ -1,7 +1,7 @@
|
||||
from __future__ import print_function
|
||||
import utils
|
||||
import copy
|
||||
import sys
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
|
||||
'''
|
||||
@ -12,10 +12,13 @@ Settings of the Go game.
|
||||
'''
|
||||
|
||||
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
|
||||
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
|
||||
|
||||
class Go:
|
||||
def __init__(self, **kwargs):
|
||||
self.game = kwargs['game']
|
||||
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
|
||||
self.simulate_latest_boards = deque(maxlen=8)
|
||||
|
||||
def _in_board(self, vertex):
|
||||
x, y = vertex
|
||||
@ -33,6 +36,16 @@ class Go:
|
||||
nei.append((_x, _y))
|
||||
return nei
|
||||
|
||||
def _corner(self, vertex):
|
||||
x, y = vertex
|
||||
corner = []
|
||||
for d in CORNER_OFFSET:
|
||||
_x = x + d[0]
|
||||
_y = y + d[1]
|
||||
if self._in_board((_x, _y)):
|
||||
corner.append((_x, _y))
|
||||
return corner
|
||||
|
||||
def _find_group(self, current_board, vertex):
|
||||
color = current_board[self.game._flatten(vertex)]
|
||||
# print ("color : ", color)
|
||||
@ -84,6 +97,47 @@ class Go:
|
||||
repeat = True
|
||||
return repeat
|
||||
|
||||
def _is_eye(self, current_board, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
cor = self._corner(vertex)
|
||||
ncolor = {color == current_board[self.game._flatten(n)] for n in nei}
|
||||
if False in ncolor:
|
||||
# print "not all neighbors are in same color with us"
|
||||
return False
|
||||
_, group = self._find_group(current_board, nei[0])
|
||||
if set(nei) < group:
|
||||
# print "all neighbors are in same group and same color with us"
|
||||
return True
|
||||
else:
|
||||
opponent_number = [current_board[self.game._flatten(c)] for c in cor].count(-color)
|
||||
opponent_propotion = float(opponent_number) / float(len(cor))
|
||||
if opponent_propotion < 0.5:
|
||||
# print "few opponents, real eye"
|
||||
return True
|
||||
else:
|
||||
# print "many opponents, fake eye"
|
||||
return False
|
||||
|
||||
def _knowledge_prunning(self, current_board, color, vertex):
|
||||
### check if it is an eye of yourself
|
||||
### assumptions : notice that this judgement requires that the state is an endgame
|
||||
if self._is_eye(current_board, color, vertex):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _sa2cv(self, state, action):
|
||||
# State is the play board, the shape is [1, self.game.size, self.game.size, 17], action is an index.
|
||||
# We need to transfer the (state, action) pair into (color, vertex) pair to simulate the move
|
||||
if state[0, 0, 0, -1] == utils.BLACK:
|
||||
color = utils.BLACK
|
||||
else:
|
||||
color = utils.WHITE
|
||||
if action == self.game.size ** 2:
|
||||
vertex = (0, 0)
|
||||
else:
|
||||
vertex = self.game._deflatten(action)
|
||||
return color, vertex
|
||||
|
||||
def _is_valid(self, history_boards, current_board, color, vertex):
|
||||
### in board
|
||||
if not self._in_board(vertex):
|
||||
@ -97,11 +151,54 @@ class Go:
|
||||
if self._is_suicide(current_board, color, vertex):
|
||||
return False
|
||||
|
||||
### forbid global isomorphous
|
||||
if self._check_global_isomorphous(history_boards, current_board, color, vertex):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def simulate_is_valid(self, history_boards, current_board, state, action):
|
||||
# initialize simulate_latest_boards and simulate_board from state
|
||||
self.simulate_latest_boards.clear()
|
||||
for i in range(8):
|
||||
self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
|
||||
self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
|
||||
|
||||
color, vertex = self._sa2cv(state, action)
|
||||
|
||||
if not self._is_valid(history_boards, current_board, color, vertex):
|
||||
return False
|
||||
|
||||
if not self._knowledge_prunning(current_board, color, vertex):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _do_move(self, color, vertex):
|
||||
if vertex == utils.PASS:
|
||||
return True
|
||||
|
||||
id_ = self.game._flatten(vertex)
|
||||
if self.simulate_board[id_] == utils.EMPTY:
|
||||
self.simulate_board[id_] = color
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def simulate_step_forward(self, state, action):
|
||||
# initialize the simulate_board from state
|
||||
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
|
||||
|
||||
color, vertex = self._sa2cv(state, action)
|
||||
|
||||
self._do_move(color, vertex)
|
||||
new_state = np.concatenate(
|
||||
[state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
|
||||
state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
|
||||
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
|
||||
axis=3)
|
||||
return new_state, 0
|
||||
|
||||
def executor_do_move(self, color, vertex):
|
||||
if not self._is_valid(self.game.history, self.game.board, color, vertex):
|
||||
return False
|
||||
|
@ -79,7 +79,7 @@ while True:
|
||||
prob.append(np.array(game.prob).reshape(-1, game.size ** 2 + 1))
|
||||
print("Finished")
|
||||
print("\n")
|
||||
score = game.executor.executor_get_score(True)
|
||||
score = game.game_engine.executor_get_score(True)
|
||||
if score > 0:
|
||||
winner = utils.BLACK
|
||||
else:
|
||||
|
@ -1,199 +0,0 @@
|
||||
import os, sys
|
||||
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
|
||||
import numpy as np
|
||||
import utils
|
||||
import time
|
||||
import copy
|
||||
import network_small
|
||||
import tensorflow as tf
|
||||
from collections import deque
|
||||
from tianshou.core.mcts.mcts import MCTS
|
||||
|
||||
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
|
||||
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
|
||||
|
||||
class GoEnv:
|
||||
def __init__(self, **kwargs):
|
||||
self.game = kwargs['game']
|
||||
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
|
||||
self.simulate_latest_boards = deque(maxlen=8)
|
||||
|
||||
def _in_board(self, vertex):
|
||||
x, y = vertex
|
||||
if x < 1 or x > self.game.size: return False
|
||||
if y < 1 or y > self.game.size: return False
|
||||
return True
|
||||
|
||||
def _neighbor(self, vertex):
|
||||
x, y = vertex
|
||||
nei = []
|
||||
for d in NEIGHBOR_OFFSET:
|
||||
_x = x + d[0]
|
||||
_y = y + d[1]
|
||||
if self._in_board((_x, _y)):
|
||||
nei.append((_x, _y))
|
||||
return nei
|
||||
|
||||
def _corner(self, vertex):
|
||||
x, y = vertex
|
||||
corner = []
|
||||
for d in CORNER_OFFSET:
|
||||
_x = x + d[0]
|
||||
_y = y + d[1]
|
||||
if self._in_board((_x, _y)):
|
||||
corner.append((_x, _y))
|
||||
return corner
|
||||
|
||||
def _find_group(self, current_board, vertex):
|
||||
color = current_board[self.game._flatten(vertex)]
|
||||
# print ("color : ", color)
|
||||
chain = set()
|
||||
frontier = [vertex]
|
||||
has_liberty = False
|
||||
while frontier:
|
||||
current = frontier.pop()
|
||||
# print ("current : ", current)
|
||||
chain.add(current)
|
||||
for n in self._neighbor(current):
|
||||
if current_board[self.game._flatten(n)] == color and not n in chain:
|
||||
frontier.append(n)
|
||||
if current_board[self.game._flatten(n)] == utils.EMPTY:
|
||||
has_liberty = True
|
||||
return has_liberty, chain
|
||||
|
||||
def _is_suicide(self, current_board, color, vertex):
|
||||
current_board[self.game._flatten(vertex)] = color # assume that we already take this move
|
||||
suicide = False
|
||||
|
||||
has_liberty, group = self._find_group(current_board, vertex)
|
||||
if not has_liberty:
|
||||
suicide = True # no liberty, suicide
|
||||
for n in self._neighbor(vertex):
|
||||
if current_board[self.game._flatten(n)] == utils.another_color(color):
|
||||
opponent_liberty, group = self._find_group(current_board, n)
|
||||
if not opponent_liberty:
|
||||
suicide = False # this move is able to take opponent's stone, not suicide
|
||||
|
||||
current_board[self.game._flatten(vertex)] = utils.EMPTY # undo this move
|
||||
return suicide
|
||||
|
||||
def _process_board(self, current_board, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
for n in nei:
|
||||
if current_board[self.game._flatten(n)] == utils.another_color(color):
|
||||
has_liberty, group = self._find_group(current_board, n)
|
||||
if not has_liberty:
|
||||
for b in group:
|
||||
current_board[self.game._flatten(b)] = utils.EMPTY
|
||||
|
||||
def _check_global_isomorphous(self, history_boards, current_board, color, vertex):
|
||||
repeat = False
|
||||
next_board = copy.copy(current_board)
|
||||
next_board[self.game._flatten(vertex)] = color
|
||||
self._process_board(next_board, color, vertex)
|
||||
if next_board in history_boards:
|
||||
repeat = True
|
||||
return repeat
|
||||
|
||||
def _is_eye(self, current_board, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
cor = self._corner(vertex)
|
||||
ncolor = {color == current_board[self.game._flatten(n)] for n in nei}
|
||||
if False in ncolor:
|
||||
# print "not all neighbors are in same color with us"
|
||||
return False
|
||||
_, group = self._find_group(current_board, nei[0])
|
||||
if set(nei) < group:
|
||||
# print "all neighbors are in same group and same color with us"
|
||||
return True
|
||||
else:
|
||||
opponent_number = [current_board[self.game._flatten(c)] for c in cor].count(-color)
|
||||
opponent_propotion = float(opponent_number) / float(len(cor))
|
||||
if opponent_propotion < 0.5:
|
||||
# print "few opponents, real eye"
|
||||
return True
|
||||
else:
|
||||
# print "many opponents, fake eye"
|
||||
return False
|
||||
|
||||
def _knowledge_prunning(self, current_board, color, vertex):
|
||||
### check if it is an eye of yourself
|
||||
### assumptions : notice that this judgement requires that the state is an endgame
|
||||
if self._is_eye(current_board, color, vertex):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _sa2cv(self, state, action):
|
||||
# State is the play board, the shape is [1, self.game.size, self.game.size, 17], action is an index.
|
||||
# We need to transfer the (state, action) pair into (color, vertex) pair to simulate the move
|
||||
if state[0, 0, 0, -1] == utils.BLACK:
|
||||
color = utils.BLACK
|
||||
else:
|
||||
color = utils.WHITE
|
||||
if action == self.game.size ** 2:
|
||||
vertex = (0, 0)
|
||||
else:
|
||||
vertex = self.game._deflatten(action)
|
||||
return color, vertex
|
||||
|
||||
def _is_valid(self, history_boards, current_board, color, vertex):
|
||||
### in board
|
||||
if not self._in_board(vertex):
|
||||
return False
|
||||
|
||||
### already have stone
|
||||
if not current_board[self.game._flatten(vertex)] == utils.EMPTY:
|
||||
return False
|
||||
|
||||
### check if it is suicide
|
||||
if self._is_suicide(current_board, color, vertex):
|
||||
return False
|
||||
|
||||
### forbid global isomorphous
|
||||
if self._check_global_isomorphous(history_boards, current_board, color, vertex):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def simulate_is_valid(self, history_boards, current_board, state, action):
|
||||
# initialize simulate_latest_boards and simulate_board from state
|
||||
self.simulate_latest_boards.clear()
|
||||
for i in range(8):
|
||||
self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
|
||||
self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
|
||||
|
||||
color, vertex = self._sa2cv(state, action)
|
||||
|
||||
if not self._is_valid(history_boards, current_board, color, vertex):
|
||||
return False
|
||||
|
||||
if not self._knowledge_prunning(current_board, color, vertex):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _do_move(self, color, vertex):
|
||||
if vertex == utils.PASS:
|
||||
return True
|
||||
|
||||
id_ = self.game._flatten(vertex)
|
||||
if self.simulate_board[id_] == utils.EMPTY:
|
||||
self.simulate_board[id_] = color
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def simulate_step_forward(self, state, action):
|
||||
# initialize the simulate_board from state
|
||||
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
|
||||
|
||||
color, vertex = self._sa2cv(state, action)
|
||||
|
||||
self._do_move(color, vertex)
|
||||
new_state = np.concatenate(
|
||||
[state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
|
||||
state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
|
||||
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
|
||||
axis=3)
|
||||
return new_state, 0
|
Loading…
x
Reference in New Issue
Block a user