fix memory growth and slowness caused by sess.run(tf.multinomial()), now ppo examples are working OK with slight memory growth (1M/min), which still needs research
This commit is contained in:
parent
4333ee5d39
commit
dfcea74fcf
1
examples/.gitignore
vendored
1
examples/.gitignore
vendored
@ -1 +1,2 @@
|
|||||||
.pyc
|
.pyc
|
||||||
|
logs/
|
||||||
|
@ -2,6 +2,8 @@
|
|||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -39,7 +41,11 @@ if __name__ == '__main__': # a clean version with only policy net, no value net
|
|||||||
|
|
||||||
clip_param = 0.2
|
clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
batch_size = 512
|
batch_size = 128
|
||||||
|
|
||||||
|
seed = 10
|
||||||
|
np.random.seed(seed)
|
||||||
|
tf.set_random_seed(seed)
|
||||||
|
|
||||||
# 1. build network with pure tf
|
# 1. build network with pure tf
|
||||||
observation = tf.placeholder(tf.float32, shape=(None,) + observation_dim) # network input
|
observation = tf.placeholder(tf.float32, shape=(None,) + observation_dim) # network input
|
||||||
@ -80,9 +86,10 @@ if __name__ == '__main__': # a clean version with only policy net, no value net
|
|||||||
# sync pi and pi_old
|
# sync pi and pi_old
|
||||||
sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)])
|
sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)])
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
for i in range(100): # until some stopping criterion met...
|
for i in range(100): # until some stopping criterion met...
|
||||||
# collect data
|
# collect data
|
||||||
training_data.collect(num_episodes=120) # YouQiaoben, ShihongSong
|
training_data.collect(num_episodes=20) # YouQiaoben, ShihongSong
|
||||||
|
|
||||||
# print current return
|
# print current return
|
||||||
print('Epoch {}:'.format(i))
|
print('Epoch {}:'.format(i))
|
||||||
@ -96,3 +103,5 @@ if __name__ == '__main__': # a clean version with only policy net, no value net
|
|||||||
|
|
||||||
# assigning pi to pi_old
|
# assigning pi to pi_old
|
||||||
sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)])
|
sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)])
|
||||||
|
|
||||||
|
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))
|
107
examples/ppo_cartpole_gym.py
Executable file
107
examples/ppo_cartpole_gym.py
Executable file
@ -0,0 +1,107 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
import gym
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
|
||||||
|
# our lib imports here! It's ok to append path in examples
|
||||||
|
import sys
|
||||||
|
sys.path.append('..')
|
||||||
|
from tianshou.core import losses
|
||||||
|
from tianshou.data.batch import Batch
|
||||||
|
import tianshou.data.advantage_estimation as advantage_estimation
|
||||||
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
|
|
||||||
|
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
||||||
|
from rllab.envs.normalized_env import normalize
|
||||||
|
|
||||||
|
|
||||||
|
def policy_net(observation, action_dim, scope=None):
|
||||||
|
"""
|
||||||
|
Constructs the policy network. NOT NEEDED IN THE LIBRARY! this is pure tf
|
||||||
|
|
||||||
|
:param observation: Placeholder for the observation. A tensor of shape (bs, x, y, channels)
|
||||||
|
:param action_dim: int. The number of actions.
|
||||||
|
:param scope: str. Specifying the scope of the variables.
|
||||||
|
"""
|
||||||
|
# with tf.variable_scope(scope):
|
||||||
|
net = tf.layers.dense(observation, 32, activation=tf.nn.tanh)
|
||||||
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
|
act_logits = tf.layers.dense(net, action_dim, activation=None)
|
||||||
|
|
||||||
|
return act_logits
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': # a clean version with only policy net, no value net
|
||||||
|
env = gym.make('CartPole-v0')
|
||||||
|
observation_dim = env.observation_space.shape
|
||||||
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
|
clip_param = 0.2
|
||||||
|
num_batches = 10
|
||||||
|
batch_size = 512
|
||||||
|
|
||||||
|
seed = 10
|
||||||
|
np.random.seed(seed)
|
||||||
|
tf.set_random_seed(seed)
|
||||||
|
|
||||||
|
# 1. build network with pure tf
|
||||||
|
observation = tf.placeholder(tf.float32, shape=(None,) + observation_dim) # network input
|
||||||
|
|
||||||
|
with tf.variable_scope('pi'):
|
||||||
|
action_logits = policy_net(observation, action_dim, 'pi')
|
||||||
|
train_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) # TODO: better management of TRAINABLE_VARIABLES
|
||||||
|
with tf.variable_scope('pi_old'):
|
||||||
|
action_logits_old = policy_net(observation, action_dim, 'pi_old')
|
||||||
|
pi_old_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'pi_old')
|
||||||
|
|
||||||
|
# 2. build losses, optimizers
|
||||||
|
pi = policy.OnehotCategorical(action_logits, observation_placeholder=observation) # YongRen: policy.Gaussian (could reference the policy in TRPO paper, my code is adapted from zhusuan.distributions) policy.DQN etc.
|
||||||
|
# for continuous action space, you may need to change an environment to run
|
||||||
|
pi_old = policy.OnehotCategorical(action_logits_old, observation_placeholder=observation)
|
||||||
|
|
||||||
|
action = tf.placeholder(dtype=tf.int32, shape=(None,)) # batch of integer actions
|
||||||
|
advantage = tf.placeholder(dtype=tf.float32, shape=(None,)) # advantage values used in the Gradients
|
||||||
|
|
||||||
|
ppo_loss_clip = losses.ppo_clip(action, advantage, clip_param, pi, pi_old) # TongzhengRen: losses.vpg ... management of placeholders and feed_dict
|
||||||
|
|
||||||
|
total_loss = ppo_loss_clip
|
||||||
|
optimizer = tf.train.AdamOptimizer(1e-4)
|
||||||
|
train_op = optimizer.minimize(total_loss, var_list=train_var_list)
|
||||||
|
|
||||||
|
# 3. define data collection
|
||||||
|
training_data = Batch(env, pi, advantage_estimation.full_return) # YouQiaoben: finish and polish Batch, advantage_estimation.gae_lambda as in PPO paper
|
||||||
|
# ShihongSong: Replay(), see dqn_example.py
|
||||||
|
# maybe a dict to manage the elements to be collected
|
||||||
|
|
||||||
|
# 4. start training
|
||||||
|
config = tf.ConfigProto()
|
||||||
|
config.gpu_options.allow_growth = True
|
||||||
|
with tf.Session(config=config) as sess:
|
||||||
|
sess.run(tf.global_variables_initializer())
|
||||||
|
# sync pi and pi_old
|
||||||
|
sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)])
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
for i in range(100): # until some stopping criterion met...
|
||||||
|
# collect data
|
||||||
|
training_data.collect(num_episodes=50) # YouQiaoben, ShihongSong
|
||||||
|
|
||||||
|
# print current return
|
||||||
|
print('Epoch {}:'.format(i))
|
||||||
|
training_data.statistics()
|
||||||
|
|
||||||
|
# update network
|
||||||
|
for _ in range(num_batches):
|
||||||
|
data = training_data.next_batch(batch_size) # YouQiaoben, ShihongSong
|
||||||
|
# TODO: auto managing of the placeholders? or add this to params of data.Batch
|
||||||
|
sess.run(train_op, feed_dict={observation: data['observations'], action: data['actions'],
|
||||||
|
advantage: data['returns']})
|
||||||
|
|
||||||
|
# assigning pi to pi_old
|
||||||
|
sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)])
|
||||||
|
|
||||||
|
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))
|
@ -54,7 +54,7 @@ class DQNOld(QValuePolicy):
|
|||||||
return the action (int) to be executed.
|
return the action (int) to be executed.
|
||||||
no exploration when exploration=None.
|
no exploration when exploration=None.
|
||||||
"""
|
"""
|
||||||
# TODO: ensure thread safety
|
# TODO: ensure thread safety, tf.multinomial to init
|
||||||
sess = tf.get_default_session()
|
sess = tf.get_default_session()
|
||||||
sampled_action = sess.run(tf.multinomial(self.logits, num_samples=1),
|
sampled_action = sess.run(tf.multinomial(self.logits, num_samples=1),
|
||||||
feed_dict={self._observation_placeholder: observation[None]})
|
feed_dict={self._observation_placeholder: observation[None]})
|
||||||
|
@ -35,6 +35,7 @@ class OnehotCategorical(StochasticPolicy):
|
|||||||
|
|
||||||
def __init__(self, logits, observation_placeholder, dtype=None, group_ndims=0, **kwargs):
|
def __init__(self, logits, observation_placeholder, dtype=None, group_ndims=0, **kwargs):
|
||||||
self._logits = tf.convert_to_tensor(logits)
|
self._logits = tf.convert_to_tensor(logits)
|
||||||
|
self._action = tf.multinomial(self.logits, num_samples=1)
|
||||||
|
|
||||||
if dtype is None:
|
if dtype is None:
|
||||||
dtype = tf.int32
|
dtype = tf.int32
|
||||||
@ -65,7 +66,7 @@ class OnehotCategorical(StochasticPolicy):
|
|||||||
# TODO: this may be ugly. also maybe huge problem when parallel
|
# TODO: this may be ugly. also maybe huge problem when parallel
|
||||||
sess = tf.get_default_session()
|
sess = tf.get_default_session()
|
||||||
# observation[None] adds one dimension at the beginning
|
# observation[None] adds one dimension at the beginning
|
||||||
sampled_action = sess.run(tf.multinomial(self.logits, num_samples=1),
|
sampled_action = sess.run(self._action,
|
||||||
feed_dict={self._observation_placeholder: observation[None]})
|
feed_dict={self._observation_placeholder: observation[None]})
|
||||||
|
|
||||||
sampled_action = sampled_action[0, 0]
|
sampled_action = sampled_action[0, 0]
|
||||||
@ -103,6 +104,9 @@ class Normal(StochasticPolicy):
|
|||||||
self._logstd = tf.convert_to_tensor(logstd, dtype = tf.float32)
|
self._logstd = tf.convert_to_tensor(logstd, dtype = tf.float32)
|
||||||
self._std = tf.exp(self._logstd)
|
self._std = tf.exp(self._logstd)
|
||||||
|
|
||||||
|
shape = tf.broadcast_dynamic_shape(tf.shape(self._mean), tf.shape(self._std))
|
||||||
|
self._action = tf.random_normal(tf.concat([[1], shape], 0), dtype = tf.float32) * self._std + self._mean
|
||||||
|
|
||||||
super(Normal, self).__init__(
|
super(Normal, self).__init__(
|
||||||
act_dtype = tf.float32,
|
act_dtype = tf.float32,
|
||||||
param_dtype = tf.float32,
|
param_dtype = tf.float32,
|
||||||
@ -126,14 +130,9 @@ class Normal(StochasticPolicy):
|
|||||||
def _act(self, observation):
|
def _act(self, observation):
|
||||||
# TODO: getting session like this maybe ugly. also maybe huge problem when parallel
|
# TODO: getting session like this maybe ugly. also maybe huge problem when parallel
|
||||||
sess = tf.get_default_session()
|
sess = tf.get_default_session()
|
||||||
mean, std = self._mean, self._std
|
|
||||||
shape = tf.broadcast_dynamic_shape(tf.shape(self._mean),\
|
|
||||||
tf.shape(self._std))
|
|
||||||
|
|
||||||
|
|
||||||
# observation[None] adds one dimension at the beginning
|
# observation[None] adds one dimension at the beginning
|
||||||
sampled_action = sess.run(tf.random_normal(tf.concat([[1], shape], 0),
|
sampled_action = sess.run(self._action,
|
||||||
dtype = tf.float32) * std + mean,
|
|
||||||
feed_dict={self._observation_placeholder: observation[None]})
|
feed_dict={self._observation_placeholder: observation[None]})
|
||||||
sampled_action = sampled_action[0, 0]
|
sampled_action = sampled_action[0, 0]
|
||||||
return sampled_action
|
return sampled_action
|
||||||
|
@ -14,19 +14,20 @@ class Batch(object):
|
|||||||
self._advantage_estimation_function = advantage_estimation_function
|
self._advantage_estimation_function = advantage_estimation_function
|
||||||
self._is_first_collect = True
|
self._is_first_collect = True
|
||||||
|
|
||||||
|
def collect(self, num_timesteps=0, num_episodes=0,
|
||||||
|
apply_function=True): # specify how many data to collect here, or fix it in __init__()
|
||||||
|
assert sum(
|
||||||
|
[num_timesteps > 0, num_episodes > 0]) == 1, "One and only one collection number specification permitted!"
|
||||||
|
|
||||||
def collect(self, num_timesteps=0, num_episodes=0, apply_function=True): # specify how many data to collect here, or fix it in __init__()
|
if num_timesteps > 0: # YouQiaoben: finish this implementation, the following code are just from openai/baselines
|
||||||
assert sum([num_timesteps > 0, num_episodes > 0]) == 1, "One and only one collection number specification permitted!"
|
|
||||||
|
|
||||||
if num_timesteps > 0: # YouQiaoben: finish this implementation, the following code are just from openai/baselines
|
|
||||||
t = 0
|
t = 0
|
||||||
ac = self.env.action_space.sample() # not used, just so we have the datatype
|
ac = self.env.action_space.sample() # not used, just so we have the datatype
|
||||||
new = True # marks if we're on first timestep of an episode
|
new = True # marks if we're on first timestep of an episode
|
||||||
if self.is_first_collect:
|
if self.is_first_collect:
|
||||||
ob = self.env.reset()
|
ob = self.env.reset()
|
||||||
self.is_first_collect = False
|
self.is_first_collect = False
|
||||||
else:
|
else:
|
||||||
ob = self.raw_data['observations'][0] # last observation!
|
ob = self.raw_data['observations'][0] # last observation!
|
||||||
|
|
||||||
# Initialize history arrays
|
# Initialize history arrays
|
||||||
observations = np.array([ob for _ in range(num_timesteps)])
|
observations = np.array([ob for _ in range(num_timesteps)])
|
||||||
@ -76,9 +77,11 @@ class Batch(object):
|
|||||||
rewards = []
|
rewards = []
|
||||||
episode_start_flags = []
|
episode_start_flags = []
|
||||||
|
|
||||||
t_count = 0
|
# t_count = 0
|
||||||
|
|
||||||
for _ in range(num_episodes):
|
for _ in range(num_episodes):
|
||||||
|
t_count = 0
|
||||||
|
|
||||||
ob = self._env.reset()
|
ob = self._env.reset()
|
||||||
observations.append(ob)
|
observations.append(ob)
|
||||||
episode_start_flags.append(True)
|
episode_start_flags.append(True)
|
||||||
@ -92,7 +95,7 @@ class Batch(object):
|
|||||||
|
|
||||||
t_count += 1
|
t_count += 1
|
||||||
if t_count >= 100: # force episode stop, just to test if memory still grows
|
if t_count >= 100: # force episode stop, just to test if memory still grows
|
||||||
done = True
|
break
|
||||||
|
|
||||||
if done: # end of episode, discard s_T
|
if done: # end of episode, discard s_T
|
||||||
break
|
break
|
||||||
@ -110,7 +113,8 @@ class Batch(object):
|
|||||||
del rewards
|
del rewards
|
||||||
del episode_start_flags
|
del episode_start_flags
|
||||||
|
|
||||||
self.raw_data = {'observations': self.observations, 'actions': self.actions, 'rewards': self.rewards, 'episode_start_flags': self.episode_start_flags}
|
self.raw_data = {'observations': self.observations, 'actions': self.actions, 'rewards': self.rewards,
|
||||||
|
'episode_start_flags': self.episode_start_flags}
|
||||||
|
|
||||||
self._is_first_collect = False
|
self._is_first_collect = False
|
||||||
|
|
||||||
@ -133,6 +137,7 @@ class Batch(object):
|
|||||||
|
|
||||||
return current_batch
|
return current_batch
|
||||||
|
|
||||||
|
# TODO: this will definitely be refactored with a proper logger
|
||||||
def statistics(self):
|
def statistics(self):
|
||||||
"""
|
"""
|
||||||
compute the statistics of the current sampled paths
|
compute the statistics of the current sampled paths
|
||||||
@ -143,16 +148,21 @@ class Batch(object):
|
|||||||
num_timesteps = rewards.shape[0]
|
num_timesteps = rewards.shape[0]
|
||||||
|
|
||||||
returns = []
|
returns = []
|
||||||
|
episode_lengths = []
|
||||||
max_return = 0
|
max_return = 0
|
||||||
|
num_episodes = 1
|
||||||
episode_start_idx = 0
|
episode_start_idx = 0
|
||||||
for i in range(1, num_timesteps):
|
for i in range(1, num_timesteps):
|
||||||
if episode_start_flags[i] or (
|
if episode_start_flags[i] or (
|
||||||
i == num_timesteps - 1): # found the start of next episode or the end of all episodes
|
i == num_timesteps - 1): # found the start of next episode or the end of all episodes
|
||||||
|
if episode_start_flags[i]:
|
||||||
|
num_episodes += 1
|
||||||
if i < rewards.shape[0] - 1:
|
if i < rewards.shape[0] - 1:
|
||||||
t = i - 1
|
t = i - 1
|
||||||
else:
|
else:
|
||||||
t = i
|
t = i
|
||||||
Gt = 0
|
Gt = 0
|
||||||
|
episode_lengths.append(t - episode_start_idx)
|
||||||
while t >= episode_start_idx:
|
while t >= episode_start_idx:
|
||||||
Gt += rewards[t]
|
Gt += rewards[t]
|
||||||
t -= 1
|
t -= 1
|
||||||
@ -163,5 +173,8 @@ class Batch(object):
|
|||||||
episode_start_idx = i
|
episode_start_idx = i
|
||||||
|
|
||||||
print('AverageReturn: {}'.format(np.mean(returns)))
|
print('AverageReturn: {}'.format(np.mean(returns)))
|
||||||
print('StdReturn: : {}'.format(np.std(returns)))
|
print('StdReturn : {}'.format(np.std(returns)))
|
||||||
print('MaxReturn : {}'.format(max_return))
|
print('NumEpisodes : {}'.format(num_episodes))
|
||||||
|
print('MinMaxReturns: {}..., {}'.format(np.sort(returns)[:3], np.sort(returns)[-3:]))
|
||||||
|
print('AverageLength: {}'.format(np.mean(episode_lengths)))
|
||||||
|
print('MinMaxLengths: {}..., {}'.format(np.sort(episode_lengths)[:3], np.sort(episode_lengths)[-3:]))
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
import sys
|
import sys
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import utility
|
from . import utility
|
||||||
|
|
||||||
|
|
||||||
class BinaryHeap(object):
|
class BinaryHeap(object):
|
||||||
|
@ -154,6 +154,7 @@ class RankBasedExperience(ReplayBuffer):
|
|||||||
target = list()
|
target = list()
|
||||||
|
|
||||||
sess = tf.get_default_session()
|
sess = tf.get_default_session()
|
||||||
|
# TODO: pre-build the thing in sess.run
|
||||||
current_datas, current_wis, current_indexs = self.sample({'global_step': sess.run(tf.train.get_global_step())})
|
current_datas, current_wis, current_indexs = self.sample({'global_step': sess.run(tf.train.get_global_step())})
|
||||||
|
|
||||||
for i in range(0, batch_size):
|
for i in range(0, batch_size):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user