Remove dummy net code (#123)

* remove dummy net; delete two files

* split code to have backbone and head

* rename class

* change torch.float to torch.float32

* use flatten(1) instead of view(batch, -1)

* remove dummy net in docs

* bugfix for rnn

* fix cuda error

* minor fix of docs

* do not change the example code in dqn tutorial, since it is for demonstration

Co-authored-by: Trinkle23897 <463003665@qq.com>
This commit is contained in:
youkaichao 2020-07-09 22:57:01 +08:00 committed by GitHub
parent aa3c453f42
commit e767de044b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
28 changed files with 219 additions and 373 deletions

View File

@ -206,26 +206,12 @@ test_envs = ts.env.VectorEnv([lambda: gym.make(task) for _ in range(test_num)])
Define the network:
```python
class Net(nn.Module):
def __init__(self, state_shape, action_shape):
super().__init__()
self.model = nn.Sequential(*[
nn.Linear(np.prod(state_shape), 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, np.prod(action_shape))
])
def forward(self, s, state=None, info={}):
if not isinstance(s, torch.Tensor):
s = torch.tensor(s, dtype=torch.float)
batch = s.shape[0]
logits = self.model(s.view(batch, -1))
return logits, state
from tianshou.utils.net.common import Net
env = gym.make(task)
state_shape = env.observation_space.shape or env.observation_space.n
action_shape = env.action_space.shape or env.action_space.n
net = Net(state_shape, action_shape)
net = Net(layer_num=2, state_shape=state_shape, action_shape=action_shape)
optim = torch.optim.Adam(net.parameters(), lr=lr)
```

View File

@ -5,3 +5,18 @@ tianshou.utils
:members:
:undoc-members:
:show-inheritance:
.. automodule:: tianshou.utils.net.common
:members:
:undoc-members:
:show-inheritance:
.. automodule:: tianshou.utils.net.discrete
:members:
:undoc-members:
:show-inheritance:
.. automodule:: tianshou.utils.net.continuous
:members:
:undoc-members:
:show-inheritance:

View File

@ -74,7 +74,7 @@ Tianshou supports any user-defined PyTorch networks and optimizers but with the
net = Net(state_shape, action_shape)
optim = torch.optim.Adam(net.parameters(), lr=1e-3)
The rules of self-defined networks are:
You can also have a try with those pre-defined networks in :mod:`~tianshou.utils.net.common`, :mod:`~tianshou.utils.net.discrete`, and :mod:`~tianshou.utils.net.continuous`. The rules of self-defined networks are:
1. Input: observation ``obs`` (may be a ``numpy.ndarray``, ``torch.Tensor``, dict, or self-defined class), hidden state ``state`` (for RNN usage), and other information ``info`` provided by the environment.
2. Output: some ``logits``, the next hidden state ``state``, and intermediate result during the policy forwarding procedure ``policy``. The logits could be a tuple instead of a ``torch.Tensor``. It depends on how the policy process the network output. For example, in PPO :cite:`PPO`, the return of the network might be ``(mu, sigma), state`` for Gaussian policy. The ``policy`` can be a Batch of torch.Tensor or other things, which will be stored in the replay buffer, and can be accessed in the policy update process (e.g. in ``policy.learn()``, the ``batch.policy`` is what you need).

View File

@ -10,8 +10,8 @@ from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.exploration import GaussianNoise
from continuous_net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
@ -57,14 +57,13 @@ def test_ddpg(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(net, args.action_shape, args.max_action,
args.device).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic = Critic(net, args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,

View File

@ -10,8 +10,8 @@ from tianshou.policy import SACPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from continuous_net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
@ -58,18 +58,17 @@ def test_sac(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,

View File

@ -10,8 +10,8 @@ from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.exploration import GaussianNoise
from continuous_net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
@ -60,18 +60,17 @@ def test_td3(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,

View File

@ -1,81 +0,0 @@
import torch
import numpy as np
from torch import nn
class Actor(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
self._max = max_action
def forward(self, s, **kwargs):
s = torch.tensor(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
logits = self._max * torch.tanh(logits)
return logits, None
class ActorProb(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu', unbounded=False):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model = nn.Sequential(*self.model)
self.mu = nn.Linear(128, np.prod(action_shape))
self.sigma = nn.Linear(128, np.prod(action_shape))
self._max = max_action
self._unbounded = unbounded
def forward(self, s, **kwargs):
if not isinstance(s, torch.Tensor):
s = torch.tensor(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
if not self._unbounded:
mu = self._max * torch.tanh(self.mu(logits))
sigma = torch.exp(self.sigma(logits))
return (mu, sigma), None
class Critic(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape) + np.prod(action_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, 1)]
self.model = nn.Sequential(*self.model)
def forward(self, s, a=None):
if not isinstance(s, torch.Tensor):
s = torch.tensor(s, device=self.device, dtype=torch.float)
if a is not None and not isinstance(a, torch.Tensor):
a = torch.tensor(a, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
if a is None:
logits = self.model(s)
else:
a = a.view(batch, -1)
logits = self.model(torch.cat([s, a], dim=1))
return logits

View File

@ -15,8 +15,8 @@ try:
import pybullet_envs
except ImportError:
pass
from continuous_net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
@ -66,18 +66,17 @@ def test_sac(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,

View File

@ -10,7 +10,8 @@ from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.exploration import GaussianNoise
from continuous_net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
from mujoco.register import reg
@ -63,18 +64,17 @@ def test_td3(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,

View File

@ -10,7 +10,8 @@ from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env.atari import create_atari_environment
from discrete_net import Net, Actor, Critic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.net.common import Net
def get_args():

View File

@ -6,12 +6,11 @@ from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.discrete import DQN
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env.atari import create_atari_environment
from discrete_net import DQN
def get_args():
parser = argparse.ArgumentParser()

View File

@ -9,8 +9,8 @@ from tianshou.env import SubprocVectorEnv
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env.atari import create_atari_environment
from discrete_net import Net, Actor, Critic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.net.common import Net
def get_args():

View File

@ -11,8 +11,8 @@ from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv
from tianshou.exploration import OUNoise
from continuous_net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
@ -62,18 +62,17 @@ def test_sac(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:

View File

@ -11,11 +11,8 @@ from tianshou.policy import DDPGPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.exploration import GaussianNoise
if __name__ == '__main__':
from net import Actor, Critic
else: # pytest
from test.continuous.net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
@ -69,14 +66,15 @@ def test_ddpg(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic = Critic(net, args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,

View File

@ -11,11 +11,8 @@ from tianshou.policy import PPOPolicy
from tianshou.policy.dist import DiagGaussian
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import ActorProb, Critic
else: # pytest
from test.continuous.net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
@ -72,13 +69,14 @@ def test_ppo(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
critic = Critic(
critic = Critic(Net(
args.layer_num, args.state_shape, device=args.device
).to(args.device)
), device=args.device).to(args.device)
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):

View File

@ -10,11 +10,8 @@ from tianshou.env import VectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import SACPolicy, ImitationPolicy
if __name__ == '__main__':
from net import Actor, ActorProb, Critic
else: # pytest
from test.continuous.net import Actor, ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, ActorProb, Critic
def get_args():
@ -68,18 +65,17 @@ def test_sac_with_il(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
@ -122,8 +118,9 @@ def test_sac_with_il(args=get_args()):
# here we define an imitation collector with a trivial policy
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -300 # lower the goal
net = Actor(1, args.state_shape, args.action_shape,
args.max_action, args.device).to(args.device)
net = Actor(Net(1, args.state_shape, device=args.device),
args.action_shape, args.max_action, args.device
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(net, optim, mode='continuous')
il_test_collector = Collector(il_policy, test_envs)

View File

@ -11,11 +11,8 @@ from tianshou.policy import TD3Policy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.exploration import GaussianNoise
if __name__ == '__main__':
from net import Actor, Critic
else: # pytest
from test.continuous.net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
@ -71,18 +68,17 @@ def test_td3(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,

View File

@ -10,11 +10,8 @@ from tianshou.env import VectorEnv
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.trainer import onpolicy_trainer, offpolicy_trainer
if __name__ == '__main__':
from net import Net, Actor, Critic
else: # pytest
from test.discrete.net import Net, Actor, Critic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.net.common import Net
def get_args():

View File

@ -10,11 +10,7 @@ from tianshou.env import VectorEnv
from tianshou.policy import DQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import Net
else: # pytest
from test.discrete.net import Net
from tianshou.utils.net.common import Net
def get_args():
@ -61,8 +57,8 @@ def test_dqn(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
net = net.to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,

View File

@ -10,11 +10,7 @@ from tianshou.env import VectorEnv
from tianshou.policy import DQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import Recurrent
else: # pytest
from test.discrete.net import Recurrent
from tianshou.utils.net.common import Recurrent
def get_args():
@ -63,8 +59,7 @@ def test_drqn(args=get_args()):
test_envs.seed(args.seed)
# model
net = Recurrent(args.layer_num, args.state_shape,
args.action_shape, args.device)
net = net.to(args.device)
args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,

View File

@ -6,16 +6,12 @@ import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils.net.common import Net
from tianshou.env import VectorEnv
from tianshou.policy import DQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer, PrioritizedReplayBuffer
if __name__ == '__main__':
from net import Net
else: # pytest
from test.discrete.net import Net
def get_args():
parser = argparse.ArgumentParser()
@ -64,8 +60,8 @@ def test_pdqn(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
net = net.to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,

View File

@ -7,16 +7,12 @@ import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils.net.common import Net
from tianshou.env import VectorEnv
from tianshou.policy import PGPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Batch, Collector, ReplayBuffer
if __name__ == '__main__':
from net import Net
else: # pytest
from test.discrete.net import Net
def compute_return_base(batch, aa=None, bb=None, gamma=0.1):
returns = np.zeros_like(batch.rew)
@ -129,8 +125,7 @@ def test_pg(args=get_args()):
# model
net = Net(
args.layer_num, args.state_shape, args.action_shape,
device=args.device, softmax=True)
net = net.to(args.device)
device=args.device, softmax=True).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = PGPolicy(net, optim, dist, args.gamma,

View File

@ -10,11 +10,8 @@ from tianshou.env import VectorEnv
from tianshou.policy import PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import Net, Actor, Critic
else: # pytest
from test.discrete.net import Net, Actor, Critic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.net.common import Net
def get_args():

View File

@ -46,7 +46,7 @@ class ImitationPolicy(BasePolicy):
self.optim.zero_grad()
if self.mode == 'continuous':
a = self(batch).act
a_ = to_torch(batch.act, dtype=torch.float, device=a.device)
a_ = to_torch(batch.act, dtype=torch.float32, device=a.device)
loss = F.mse_loss(a, a_)
elif self.mode == 'discrete': # classification
a = self(batch).logits

View File

View File

@ -1,82 +1,67 @@
import torch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from tianshou.data import to_torch
class Net(nn.Module):
"""Simple MLP backbone. For advanced usage (how to customize the network),
please refer to :ref:`build_the_network`.
:param concat: whether the input shape is concatenated by state_shape
and action_shape. If it is True, ``action_shape`` is not the output
shape, but affects the input shape.
"""
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu',
softmax=False):
softmax=False, concat=False):
super().__init__()
self.device = device
input_size = np.prod(state_shape)
if concat:
input_size += np.prod(action_shape)
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.Linear(input_size, 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
if action_shape:
if action_shape and not concat:
self.model += [nn.Linear(128, np.prod(action_shape))]
if softmax:
self.model += [nn.Softmax(dim=-1)]
self.model = nn.Sequential(*self.model)
def forward(self, s, state=None, info={}):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
s = to_torch(s, device=self.device, dtype=torch.float32)
s = s.flatten(1)
logits = self.model(s)
return logits, state
class Actor(nn.Module):
def __init__(self, preprocess_net, action_shape):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, np.prod(action_shape))
def forward(self, s, state=None, info={}):
logits, h = self.preprocess(s, state)
logits = F.softmax(self.last(logits), dim=-1)
return logits, h
class Critic(nn.Module):
def __init__(self, preprocess_net):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, 1)
def forward(self, s, **kwargs):
logits, h = self.preprocess(s, state=kwargs.get('state', None))
logits = self.last(logits)
return logits
class Recurrent(nn.Module):
"""Simple Recurrent network based on LSTM. For advanced usage (how to
customize the network), please refer to :ref:`build_the_network`.
"""
def __init__(self, layer_num, state_shape, action_shape, device='cpu'):
super().__init__()
self.state_shape = state_shape
self.action_shape = action_shape
self.device = device
self.fc1 = nn.Linear(np.prod(state_shape), 128)
self.nn = nn.LSTM(input_size=128, hidden_size=128,
num_layers=layer_num, batch_first=True)
self.fc1 = nn.Linear(np.prod(state_shape), 128)
self.fc2 = nn.Linear(128, np.prod(action_shape))
def forward(self, s, state=None, info={}):
s = to_torch(s, device=self.device, dtype=torch.float)
s = to_torch(s, device=self.device, dtype=torch.float32)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(s.shape) == 2:
bsz, dim = s.shape
length = 1
else:
bsz, length, dim = s.shape
s = self.fc1(s.view([bsz * length, dim]))
s = s.view(bsz, length, -1)
s = s.unsqueeze(-2)
s = self.fc1(s)
self.nn.flatten_parameters()
if state is None:
s, (h, c) = self.nn(s)

View File

@ -6,85 +6,77 @@ from tianshou.data import to_torch
class Actor(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
self.preprocess = preprocess_net
self.last = nn.Linear(128, np.prod(action_shape))
self._max = max_action
def forward(self, s, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
logits = self._max * torch.tanh(logits)
return logits, None
class ActorProb(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model = nn.Sequential(*self.model)
self.mu = nn.Linear(128, np.prod(action_shape))
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
# self.sigma = nn.Linear(128, np.prod(action_shape))
self._max = max_action
def forward(self, s, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
mu = self.mu(logits)
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
# assert sigma.shape == mu.shape
# mu = self._max * torch.tanh(self.mu(logits))
# sigma = torch.exp(self.sigma(logits))
return (mu, sigma), None
def forward(self, s, state=None, info={}):
logits, h = self.preprocess(s, state)
logits = self._max * torch.tanh(self.last(logits))
return logits, h
class Critic(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape) + np.prod(action_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, 1)]
self.model = nn.Sequential(*self.model)
self.preprocess = preprocess_net
self.last = nn.Linear(128, 1)
def forward(self, s, a=None, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
s = to_torch(s, device=self.device, dtype=torch.float32)
s = s.flatten(1)
if a is not None:
if not isinstance(a, torch.Tensor):
a = torch.tensor(a, device=self.device, dtype=torch.float)
a = a.view(batch, -1)
a = to_torch(a, device=self.device, dtype=torch.float32)
a = a.flatten(1)
s = torch.cat([s, a], dim=1)
logits = self.model(s)
logits, h = self.preprocess(s)
logits = self.last(logits)
return logits
class ActorProb(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, action_shape,
max_action, device='cpu', unbounded=False):
super().__init__()
self.preprocess = preprocess_net
self.device = device
self.mu = nn.Linear(128, np.prod(action_shape))
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
self._max = max_action
self._unbounded = unbounded
def forward(self, s, state=None, **kwargs):
logits, h = self.preprocess(s, state)
mu = self.mu(logits)
if not self._unbounded:
mu = self._max * torch.tanh(mu)
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
return (mu, sigma), None
class RecurrentActorProb(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
@ -95,16 +87,12 @@ class RecurrentActorProb(nn.Module):
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
def forward(self, s, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
s = to_torch(s, device=self.device, dtype=torch.float32)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(s.shape) == 2:
bsz, dim = s.shape
length = 1
else:
bsz, length, dim = s.shape
s = s.view(bsz, length, -1)
s = s.unsqueeze(-2)
logits, _ = self.nn(s)
logits = logits[:, -1]
mu = self.mu(logits)
@ -115,6 +103,10 @@ class RecurrentActorProb(nn.Module):
class RecurrentCritic(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
super().__init__()
self.state_shape = state_shape
@ -125,7 +117,7 @@ class RecurrentCritic(nn.Module):
self.fc2 = nn.Linear(128 + np.prod(action_shape), 1)
def forward(self, s, a=None):
s = to_torch(s, device=self.device, dtype=torch.float)
s = to_torch(s, device=self.device, dtype=torch.float32)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
@ -135,7 +127,7 @@ class RecurrentCritic(nn.Module):
s = s[:, -1]
if a is not None:
if not isinstance(a, torch.Tensor):
a = torch.tensor(a, device=self.device, dtype=torch.float)
a = torch.tensor(a, device=self.device, dtype=torch.float32)
s = torch.cat([s, a], dim=1)
s = self.fc2(s)
return s

View File

@ -4,29 +4,11 @@ from torch import nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
if action_shape:
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
def forward(self, s, state=None, info={}):
if not isinstance(s, torch.Tensor):
s = torch.tensor(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
return logits, state
class Actor(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, action_shape):
super().__init__()
self.preprocess = preprocess_net
@ -39,18 +21,25 @@ class Actor(nn.Module):
class Critic(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, 1)
def forward(self, s):
logits, h = self.preprocess(s, None)
def forward(self, s, **kwargs):
logits, h = self.preprocess(s, state=kwargs.get('state', None))
logits = self.last(logits)
return logits
class DQN(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, h, w, action_shape, device='cpu'):
super(DQN, self).__init__()
@ -74,7 +63,7 @@ class DQN(nn.Module):
def forward(self, x, state=None, info={}):
if not isinstance(x, torch.Tensor):
x = torch.tensor(x, device=self.device, dtype=torch.float)
x = torch.tensor(x, device=self.device, dtype=torch.float32)
x = x.permute(0, 3, 1, 2)
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))