This commit is contained in:
Trinkle23897 2020-03-23 17:17:41 +08:00
parent 30a0fc079c
commit e95218e295
5 changed files with 230 additions and 22 deletions

1
.gitignore vendored
View File

@ -136,3 +136,4 @@ dmypy.json
# customize
flake8.sh
log/
MUJOCO_LOG.TXT

114
test/continuous/test_sac.py Normal file
View File

@ -0,0 +1,114 @@
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import SACPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
if __name__ == '__main__':
from net import ActorProb, Critic
else: # pytest
from test.continuous.net import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_sac(args=get_args()):
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# train_envs = gym.make(args.task)
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, args.alpha,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=True)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.buffer_size)
# log
writer = SummaryWriter(args.logdir)
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, writer=writer)
if args.task == 'Pendulum-v0':
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_sac()

View File

@ -15,9 +15,10 @@ class DDPGPolicy(BasePolicy):
tau=0.005, gamma=0.99, exploration_noise=0.1,
action_range=None, reward_normalization=True):
super().__init__()
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
self.actor_optim = actor_optim
if actor is not None:
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
self.actor_optim = actor_optim
if critic is not None:
self.critic, self.critic_old = critic, deepcopy(critic)
self.critic_old.eval()
@ -28,7 +29,11 @@ class DDPGPolicy(BasePolicy):
self._gamma = gamma
assert 0 <= exploration_noise, 'noise should not be negative'
self._eps = exploration_noise
assert action_range is not None
self._range = action_range
self._action_bias = (action_range[0] + action_range[1]) / 2
self._action_scale = (action_range[1] - action_range[0]) / 2
# it is only a little difference to use rand_normal
# self.noise = OUNoise()
self._rew_norm = reward_normalization
self.__eps = np.finfo(np.float32).eps.item()
@ -53,19 +58,27 @@ class DDPGPolicy(BasePolicy):
self.critic_old.parameters(), self.critic.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def process_fn(self, batch, buffer, indice):
if self._rew_norm:
self._rew_mean = buffer.rew.mean()
self._rew_std = buffer.rew.std()
return batch
def __call__(self, batch, state=None,
model='actor', input='obs', eps=None):
model = getattr(self, model)
obs = getattr(batch, input)
logits, h = model(obs, state=state, info=batch.info)
logits += self._action_bias
if eps is None:
eps = self._eps
# noise = np.random.normal(0, eps, size=logits.shape)
# noise = self.noise(logits.shape, eps)
# logits += torch.tensor(noise, device=logits.device)
logits += torch.randn(size=logits.shape, device=logits.device) * eps
if self._range:
logits = logits.clamp(self._range[0], self._range[1])
if eps > 0:
logits += torch.randn(
size=logits.shape, device=logits.device) * eps
logits = logits.clamp(self._range[0], self._range[1])
return Batch(act=logits, state=h)
def learn(self, batch, batch_size=None, repeat=1):
@ -74,7 +87,7 @@ class DDPGPolicy(BasePolicy):
dev = target_q.device
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
if self._rew_norm:
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
rew = (rew - self._rew_mean) / (self._rew_std + self.__eps)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
current_q = self.critic(batch.obs, batch.act)

View File

@ -9,18 +9,98 @@ from tianshou.policy import DDPGPolicy
class SACPolicy(DDPGPolicy):
"""docstring for SACPolicy"""
def __init__(self, actor, actor_optim, critic, critic_optim,
tau, gamma, ):
super().__init__()
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
self.actor_optim = actor_optim
self.critic, self.critic_old = critic, deepcopy(critic)
self.critic_old.eval()
self.critic_optim = critic_optim
def __call__(self, batch, state=None):
pass
def __init__(self, actor, actor_optim, critic1, critic1_optim,
critic2, critic2_optim, tau=0.005, gamma=0.99,
alpha=0.2, action_range=None, reward_normalization=True):
super().__init__(None, None, None, None, tau, gamma, 0,
action_range, reward_normalization)
self.actor, self.actor_optim = actor, actor_optim
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._alpha = alpha
self.__eps = np.finfo(np.float32).eps.item()
def train(self):
self.training = True
self.actor.train()
self.critic1.train()
self.critic2.train()
def eval(self):
self.training = False
self.actor.eval()
self.critic1.eval()
self.critic2.eval()
def sync_weight(self):
for o, n in zip(
self.critic1_old.parameters(), self.critic1.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic2_old.parameters(), self.critic2.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def __call__(self, batch, state=None, input='obs'):
obs = getattr(batch, input)
logits, h = self.actor(obs, state=state, info=batch.info)
assert isinstance(logits, tuple)
dist = torch.distributions.Normal(*logits)
x = dist.rsample()
y = torch.tanh(x)
act = y * self._action_scale + self._action_bias
log_prob = dist.log_prob(x) - torch.log(
self._action_scale * (1 - y.pow(2)) + self.__eps)
act = act.clamp(self._range[0], self._range[1])
return Batch(
logits=logits, act=act, state=h, dist=dist, log_prob=log_prob)
def learn(self, batch, batch_size=None, repeat=1):
pass
obs_next_result = self(batch, input='obs_next')
a_ = obs_next_result.act
dev = a_.device
batch.act = torch.tensor(batch.act, dtype=torch.float, device=dev)
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_),
) - self._alpha * obs_next_result.log_prob
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
if self._rew_norm:
rew = (rew - self._rew_mean) / (self._rew_std + self.__eps)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
obs_result = self(batch)
a = obs_result.act
current_q1, current_q1a = self.critic1(
np.concatenate([batch.obs, batch.obs]), torch.cat([batch.act, a])
).split(batch.obs.shape[0])
current_q2, current_q2a = self.critic2(
np.concatenate([batch.obs, batch.obs]), torch.cat([batch.act, a])
).split(batch.obs.shape[0])
actor_loss = (self._alpha * obs_result.log_prob - torch.min(
current_q1a, current_q2a)).mean()
# critic 1
critic1_loss = F.mse_loss(current_q1, target_q)
self.critic1_optim.zero_grad()
critic1_loss.backward(retain_graph=True)
self.critic1_optim.step()
# critic 2
critic2_loss = F.mse_loss(current_q2, target_q)
self.critic2_optim.zero_grad()
critic2_loss.backward(retain_graph=True)
self.critic2_optim.step()
# actor
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
self.sync_weight()
return {
'loss/actor': actor_loss.detach().cpu().numpy(),
'loss/critic1': critic1_loss.detach().cpu().numpy(),
'loss/critic2': critic2_loss.detach().cpu().numpy(),
}

View File

@ -8,6 +8,7 @@ from tianshou.policy import DDPGPolicy
class TD3Policy(DDPGPolicy):
"""docstring for TD3Policy"""
def __init__(self, actor, actor_optim, critic1, critic1_optim,
critic2, critic2_optim, tau=0.005, gamma=0.99,
exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2,
@ -57,14 +58,13 @@ class TD3Policy(DDPGPolicy):
if self._noise_clip >= 0:
noise = noise.clamp(-self._noise_clip, self._noise_clip)
a_ += noise
if self._range:
a_ = a_.clamp(self._range[0], self._range[1])
a_ = a_.clamp(self._range[0], self._range[1])
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_))
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
if self._rew_norm:
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
rew = (rew - self._rew_mean) / (self._rew_std + self.__eps)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
# critic 1