- A DummyTqdm class added to utils: it replicates the interface used by trainers, but does not show the progress bar;
- Added a show_progress argument to the base trainer: when show_progress == True, dummy_tqdm is used in place of tqdm.
The new proposed feature is to have trainers as generators.
The usage pattern is:
```python
trainer = OnPolicyTrainer(...)
for epoch, epoch_stat, info in trainer:
print(f"Epoch: {epoch}")
print(epoch_stat)
print(info)
do_something_with_policy()
query_something_about_policy()
make_a_plot_with(epoch_stat)
display(info)
```
- epoch int: the epoch number
- epoch_stat dict: a large collection of metrics of the current epoch, including stat
- info dict: the usual dict out of the non-generator version of the trainer
You can even iterate on several different trainers at the same time:
```python
trainer1 = OnPolicyTrainer(...)
trainer2 = OnPolicyTrainer(...)
for result1, result2, ... in zip(trainer1, trainer2, ...):
compare_results(result1, result2, ...)
```
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
- Fixes an inconsistency in the implementation of Discrete CRR. Now it uses `Critic` class for its critic, following conventions in other actor-critic policies;
- Updates several offline policies to use `ActorCritic` class for its optimizer to eliminate randomness caused by parameter sharing between actor and critic;
- Add `writer.flush()` in TensorboardLogger to ensure real-time result;
- Enable `test_collector=None` in 3 trainers to turn off testing during training;
- Updates the Atari offline results in README.md;
- Moves Atari offline RL examples to `examples/offline`; tests to `test/offline` per review comments.
- collector.collect() now returns 4 extra keys: rew/rew_std/len/len_std (previously this work is done in logger)
- save_fn() will be called at the beginning of trainer
This PR focus on refactor of logging method to solve bug of nan reward and log interval. After these two pr, hopefully fundamental change of tianshou/data is finished. We then can concentrate on building benchmarks of tianshou finally.
Things changed:
1. trainer now accepts logger (BasicLogger or LazyLogger) instead of writer;
2. remove utils.SummaryWriter;
This PR focus on some definition change of trainer to make it more friendly to use and be consistent with typical usage in research papers, typically change `collect-per-step` to `step-per-collect`, add `update-per-step` / `episode-per-collect` accordingly, and modify the documentation.
This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix#245. You can check #274 for more detail.
Things changed in this PR:
1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test
Co-authored-by: n+e <trinkle23897@gmail.com>