58 Commits

Author SHA1 Message Date
ChenDRAG
7036073649
Trainer refactor : some definition change (#293)
This PR focus on some definition change of trainer to make it more friendly to use and be consistent with typical usage in research papers, typically change `collect-per-step` to `step-per-collect`, add `update-per-step` / `episode-per-collect` accordingly, and modify the documentation.
2021-02-21 13:06:02 +08:00
ChenDRAG
150d0ec51b
Step collector implementation (#280)
This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix #245. You can check #274 for more detail.

Things changed in this PR:

1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-19 10:33:49 +08:00
n+e
5ed6c1c7aa
change the step in trainer (#235)
This PR separates the `global_step` into `env_step` and `gradient_step`. In the future, the data from the collecting state will be stored under `env_step`, and the data from the updating state will be stored under `gradient_step`.

Others:
- add `rew_std` and `best_result` into the monitor
- fix network unbounded in `test/continuous/test_sac_with_il.py` and `examples/box2d/bipedal_hardcore_sac.py`
- change the dependency of ray to 1.0.0 since ray-project/ray#10134 has been resolved
2020-10-04 21:55:43 +08:00
rocknamx
bf39b9ef7d
clarify updating state (#224)
Add an indicator(i.e. `self.learning`) of learning will be convenient for distinguishing state of policy.
Meanwhile, the state of `self.training` will be undisputed in the training stage.
Related issue: #211 

Others:
- fix a bug in DDQN: target_q could not be sampled from np.random.rand
- fix a bug in DQN atari net: it should add a ReLU before the last layer
- fix a bug in collector timing

Co-authored-by: n+e <463003665@qq.com>
2020-09-22 16:28:46 +08:00
n+e
b284ace102
type check in unit test (#200)
Fix #195: Add mypy test in .github/workflows/docs_and_lint.yml.

Also remove the out-of-the-date api
2020-09-13 19:31:50 +08:00
n+e
c91def6cbc
code format and update function signatures (#213)
Cherry-pick from #200 

- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range

In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
2020-09-12 15:39:01 +08:00
n+e
b86d78766b
fix docs and add docstring check (#210)
- fix broken links and out-of-the-date content
- add pydocstyle and doc8 check
- remove collector.seed and collector.render
2020-09-11 07:55:37 +08:00
n+e
8bb8ecba6e
set policy.eval() before collector.collect (#204)
* fix #203

* no_grad argument in collector.collect
2020-09-06 16:20:16 +08:00
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
youkaichao
a9f9940d17
code refactor for venv (#179)
- Refacor code to remove duplicate code

- Enable async simulation for all vector envs

- Remove `collector.close` and rename `VectorEnv` to `DummyVectorEnv`

The abstraction of vector env changed.

Prior to this pr, each vector env is almost independent.

After this pr, each env is wrapped into a worker, and vector envs differ with their worker type. In fact, users can just use `BaseVectorEnv` with different workers, I keep `SubprocVectorEnv`, `ShmemVectorEnv` for backward compatibility.

Co-authored-by: n+e <463003665@qq.com>
Co-authored-by: magicly <magicly007@gmail.com>
2020-08-19 15:00:24 +08:00
youkaichao
7f3b817b24
add policy.update to enable post process and remove collector.sample (#180)
* add policy.update to enable post process and remove collector.sample

* update doc in policy concept

* remove collector.sample in doc

* doc update of concepts

* docs

* polish

* polish policy

* remove collector.sample in docs

* minor fix

* Apply suggestions from code review

just a test

* doc fix

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-08-15 16:10:42 +08:00
Trinkle23897
b7a4015db7 doc update and do not force save 'policy' in np format (#168) 2020-07-27 16:54:14 +08:00
Alexis DUBURCQ
e024afab8c
Asynchronous sampling vector environment (#134)
Fix #103

Co-authored-by: youkaichao <youkaichao@126.com>
Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-07-26 18:01:21 +08:00
youkaichao
bfeffe1f97
unify single-env and multi-env in collector (#157)
Unify the implementation with multi-environments (wrap a single environment in a multi-environment with one envs) to greatly simplify the code.

This changed the behavior of single-environment.
Prior to this pr, for single environment, collector.collect(n_step=n) will step n steps.
After this pr, for single environment, collector.collect(n_step=n) will step m episodes until the steps are greater than n.

That is to say, collectors now always collect full episodes.
2020-07-23 16:40:53 +08:00
youkaichao
3a08e27ed4 Standardized behavior of Batch.cat and misc code refactor (#137)
* code refactor; remove unused kwargs; add reward_normalization for dqn

* bugfix for __setitem__ with torch.Tensor; add Batch.condense

* minor fix

* support cat with empty Batch

* remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases

* support stack with empty Batch

* remove condense

* refactor code to reflect the shared / partial / reserved categories of keys

* add is_empty(recursive=False)

* doc fix

* docfix and bugfix for _is_batch_set

* add doc for key reservation

* bugfix for algebra operators

* fix cat with lens hint

* code refactor

* bugfix for storing None

* use ValueError instead of exception

* hide lens away from users

* add comment for __cat

* move the computation of the initial value of lens in cat_ itself.

* change the place of doc string

* doc fix for Batch doc string

* change recursive to recurse

* doc string fix

* minor fix for batch doc
2020-07-20 15:54:18 +08:00
Alexis DUBURCQ
09e10e384f Vector env enable select worker (#132)
* Enable selecting worker for vector env step method.

* Update collector to match new vecenv selective worker behavior.

* Bug fix.

* Fix rebase

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-20 15:54:18 +08:00
youkaichao
26fb87433d Improve collector (#125)
* remove multibuf

* reward_metric

* make fileds with empty Batch rather than None after reset

* many fixes and refactor
Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-07-13 17:33:01 +08:00
youkaichao
8913bf36b1
change Batch.empty to in-place fill; add copy option for Batch construction (#110)
* in-place empty_ for Batch

* change Batch.empty to in-place fill; add copy option for Batch construction

* type signiture & remove shadow names for copy

* add doc for data type (only support numbers and object data type)

* add unit test for Batch copy

* fix pep8

* add test case for Batch.empty

* doc fix

* fix pep8

* use object to test Batch

* test commit

* refact

* change Batch(copy) testcase

* minor fix

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-07-06 20:30:15 +08:00
n+e
db0e2e5cd2
Advanced Batch slicing & minor fix of RNN support (#106)
* add shape property and modify __getitem__

* change Batch.size to Batch.shape

* setattr

* Batch.empty

* remove scalar in advanced slicing

* modify empty_ and __getitem__

* missing testcase

* fix empty
2020-06-30 18:02:44 +08:00
Trinkle23897
e0f4862d01 store RNN hidden states in policy._state and add sample_avail in buffer (#19) 2020-06-29 12:18:52 +08:00
Alexis DUBURCQ
ec270759ab
Batch refactoring (#87)
* Enable to stack Batch instances. Add Batch cat static method. Rename cat in cat_ since inplace.

* Properly handle Batch init using np.array of dict.

* WIP

* Get rid of metadata.

* Update UT. Replace cat by cat_ everywhere.

* Do not sort Batch keys anymore for efficiency. Add items method.

* Fix cat copy issue.

* Add unit test to chack cat and stack methods.

* Remove used import.

* Fix linter issues.

* Fix unit tests.

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-06-23 22:50:59 +08:00
danagi
13828f6309
added noise param to collector for test phase, fixed examples to adapt modification (#86)
* Add auto alpha tuning and exploration noise for sac.
Add class BaseNoise and GaussianNoise for the concept of exploration noise.
Add new test for sac tested in MountainCarContinuous-v0,
which should benefits from the two above new feature.

* add exploration noise to collector, fix example to adapt modification
2020-06-23 07:20:51 +08:00
Trinkle23897
a655334d00 change batch.append to batch.cat 2020-06-20 22:23:12 +08:00
Trinkle23897
1a914336f7 add random action in collector (fix #78) 2020-06-11 08:57:37 +08:00
Trinkle23897
f1951780ab fix a bug of storing batch over batch data into buffer 2020-06-09 18:46:14 +08:00
Alexis DUBURCQ
8af7196a9a
Robust conversion from/to numpy/pytorch (#63)
* Enable to convert Batch data back to torch.

* Add torch converter to collector.

* Fix

* Move to_numpy/to_torch convert in dedicated utils.py.

* Use to_numpy/to_torch to convert arrays.

* fix lint

* fix

* Add unit test to check Batch from/to numpy.

* Fix Batch over Batch.

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-05-29 20:45:21 +08:00
Trinkle23897
be9ce44290 fix #59 2020-05-29 11:49:47 +08:00
Trinkle23897
de556fd22d item3 of #51 2020-05-27 11:02:23 +08:00
Trinkle23897
0eef0ca198 fix optional type syntax 2020-05-16 20:08:32 +08:00
Trinkle23897
9b26137cd2 add type annotation 2020-05-12 11:31:47 +08:00
Trinkle23897
075825325e add preprocess_fn (#42) 2020-05-05 13:39:51 +08:00
Trinkle23897
134f787e24 reserve 'policy' keyword in replay buffer 2020-04-29 17:48:48 +08:00
Trinkle23897
4fd826761c enable null buffer in test collector 2020-04-20 11:50:18 +08:00
Trinkle23897
7b65d43394 vanilla imitation learning 2020-04-13 19:37:27 +08:00
Trinkle23897
74407e13da env info log_fn (#28) 2020-04-10 18:02:05 +08:00
Trinkle23897
13086b7f64 add ignore_obs_next in buffer 2020-04-10 09:01:17 +08:00
Trinkle23897
6da80e045a fix rnn (#19), add __repr__, and fix #26 2020-04-09 19:53:45 +08:00
Trinkle23897
86572c66d4 maybe finished rnn? 2020-04-08 21:13:15 +08:00
Trinkle23897
e0809ff135 add policy docs (#21) 2020-04-06 19:36:59 +08:00
Trinkle23897
610390c132 add docs of collector and trainer (#20) 2020-04-05 18:34:45 +08:00
Oblivion
4d4d0daf9e
Performance improve (#18)
* improve performance

set one thread for NN
replace detach() op with torch.no_grad()

* fix pep 8 errors
2020-04-05 09:10:21 +08:00
Trinkle23897
f23b0dfac9 add ListReplayBuffer 2020-03-28 15:14:41 +08:00
Trinkle23897
c42990c725 add rllib result and fix pep8 2020-03-28 09:43:35 +08:00
Minghao Zhang
77068af526
add examples, fix some bugs (#5)
* update atari.py

* fix setup.py
pass the pytest

* fix setup.py
pass the pytest

* add args "render"

* change the tensorboard writter

* change the tensorboard writter

* change device, render, tensorboard log location

* change device, render, tensorboard log location

* remove some wrong local files

* fix some tab mistakes and the envs name in continuous/test_xx.py

* add examples and point robot maze environment

* fix some bugs during testing examples

* add dqn network and fix some args

* change back the tensorboard writter's frequency to ensure ppo and a2c can write things normally

* add a warning to collector

* rm some unrelated files

* reformat

* fix a bug in test_dqn due to the model wrong selection
2020-03-28 07:27:18 +08:00
Trinkle23897
44f911bc31 add pytorch drl result 2020-03-27 09:04:29 +08:00
Minghao Zhang
3c0a09fefd
minor reformat (#2)
* update atari.py

* fix setup.py
pass the pytest

* fix setup.py
pass the pytest
2020-03-26 09:01:20 +08:00
Trinkle23897
fdc969b830 fix collector 2020-03-25 14:08:28 +08:00
Trinkle23897
75364cd986 ppo and early stop 2020-03-20 19:52:29 +08:00
Trinkle23897
c87fe3c18c add trainer 2020-03-19 17:23:46 +08:00
Trinkle23897
64bab0b6a0 ddpg 2020-03-18 21:45:41 +08:00