20 Commits

Author SHA1 Message Date
ChenDRAG
dd4a01132c
Fix SAC loss explode (#333)
* change SAC action_bound_method to "clip" (tanh is hardcoded in forward)

* docstring update

* modelbase -> modelbased
2021-04-04 17:33:35 +08:00
ChenDRAG
4d92952a7b
Remap action to fit gym's action space (#313)
Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-03-21 16:45:50 +08:00
ChenDRAG
e605bdea94
MuJoCo Benchmark - DDPG, TD3, SAC (#305)
Releasing Tianshou's SOTA benchmark of 9 out of 13 environments from the MuJoCo Gym task suite.
2021-03-07 19:21:02 +08:00
ChenDRAG
f22b539761
Remove reward_normaliztion option in offpolicy algorithm (#298)
* remove rew_norm in nstep implementation
* improve test
* remove runnable/
* various doc fix

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-27 11:20:43 +08:00
ChenDRAG
3108b9db0d
Add Timelimit trick to optimize policies (#296)
* consider timelimit.truncated in calculating returns by default
* remove ignore_done
2021-02-26 13:23:18 +08:00
wizardsheng
1eb6137645
Add QR-DQN algorithm (#276)
This is the PR for QR-DQN algorithm: https://arxiv.org/abs/1710.10044

1. add QR-DQN policy in tianshou/policy/modelfree/qrdqn.py.
2. add QR-DQN net in examples/atari/atari_network.py.
3. add QR-DQN atari example in examples/atari/atari_qrdqn.py.
4. add QR-DQN statement in tianshou/policy/init.py.
5. add QR-DQN unit test in test/discrete/test_qrdqn.py.
6. add QR-DQN atari results in examples/atari/results/qrdqn/.
7. add compute_q_value in DQNPolicy and C51Policy for simplify forward function.
8. move `with torch.no_grad():` from `_target_q` to BasePolicy

By running "python3 atari_qrdqn.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '19.8 ± 0.40', in epoch 8.
2021-01-28 09:27:05 +08:00
n+e
c91def6cbc
code format and update function signatures (#213)
Cherry-pick from #200 

- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range

In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
2020-09-12 15:39:01 +08:00
n+e
b86d78766b
fix docs and add docstring check (#210)
- fix broken links and out-of-the-date content
- add pydocstyle and doc8 check
- remove collector.seed and collector.render
2020-09-11 07:55:37 +08:00
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
youkaichao
7f3b817b24
add policy.update to enable post process and remove collector.sample (#180)
* add policy.update to enable post process and remove collector.sample

* update doc in policy concept

* remove collector.sample in doc

* doc update of concepts

* docs

* polish

* polish policy

* remove collector.sample in docs

* minor fix

* Apply suggestions from code review

just a test

* doc fix

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-08-15 16:10:42 +08:00
n+e
140b1c2cab
Improve PER (#159)
- use segment tree to rewrite the previous PrioReplayBuffer code, add the test

- enable all Q-learning algorithms to use PER
2020-08-06 10:26:24 +08:00
n+e
352a518399
3 fix (#158)
- fix 2 warning in doctest
- change the minimum version of gym (to be aligned with openai baselines)
- change squeeze and reshape to flatten (related to #155). I think flatten is better.
2020-07-23 15:12:02 +08:00
n+e
089b85b6a2
Fix shape inconsistency in A2CPolicy and PPOPolicy (#155)
- The original `r - v`'s shape in A2C is wrong.

- The shape of log_prob is different: [bsz] in Categorical and [bsz, 1] in Normal. Should manually make the shape to be consistent with other tensors.
2020-07-21 22:24:06 +08:00
youkaichao
5b1373924e
doc fix; policy train/eval signiture fix (#109)
* doc fix; policy train/eval signiture fix

* change train/eval behavior according to pytorch

* change train/eval behavior according to pytorch
2020-07-06 10:44:34 +08:00
danagi
c59ad40aef
Add auto alpha tuning and exploration noise for sac. (#80)
Add class BaseNoise and GaussianNoise for the concept of exploration noise.
Add new test for sac tested in MountainCarContinuous-v0,
which should benefits from the two above new feature.
2020-06-16 22:17:28 +08:00
Trinkle23897
dc451dfe88 nstep all (fix #51) 2020-06-03 13:59:47 +08:00
Alexis DUBURCQ
8af7196a9a
Robust conversion from/to numpy/pytorch (#63)
* Enable to convert Batch data back to torch.

* Add torch converter to collector.

* Fix

* Move to_numpy/to_torch convert in dedicated utils.py.

* Use to_numpy/to_torch to convert arrays.

* fix lint

* fix

* Add unit test to check Batch from/to numpy.

* Fix Batch over Batch.

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-05-29 20:45:21 +08:00
Trinkle23897
0eef0ca198 fix optional type syntax 2020-05-16 20:08:32 +08:00
Trinkle23897
9b26137cd2 add type annotation 2020-05-12 11:31:47 +08:00
Trinkle23897
19f2cce294 seealso and change policy dir structure 2020-04-09 21:36:53 +08:00