* code refactor; remove unused kwargs; add reward_normalization for dqn
* bugfix for __setitem__ with torch.Tensor; add Batch.condense
* minor fix
* support cat with empty Batch
* remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases
* support stack with empty Batch
* remove condense
* refactor code to reflect the shared / partial / reserved categories of keys
* add is_empty(recursive=False)
* doc fix
* docfix and bugfix for _is_batch_set
* add doc for key reservation
* bugfix for algebra operators
* fix cat with lens hint
* code refactor
* bugfix for storing None
* use ValueError instead of exception
* hide lens away from users
* add comment for __cat
* move the computation of the initial value of lens in cat_ itself.
* change the place of doc string
* doc fix for Batch doc string
* change recursive to recurse
* doc string fix
* minor fix for batch doc
Add class BaseNoise and GaussianNoise for the concept of exploration noise.
Add new test for sac tested in MountainCarContinuous-v0,
which should benefits from the two above new feature.
* Enable to convert Batch data back to torch.
* Add torch converter to collector.
* Fix
* Move to_numpy/to_torch convert in dedicated utils.py.
* Use to_numpy/to_torch to convert arrays.
* fix lint
* fix
* Add unit test to check Batch from/to numpy.
* Fix Batch over Batch.
Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
* add sum_tree.py
* add prioritized replay buffer
* del sum_tree.py
* fix some format issues
* fix weight_update bug
* simply replace replaybuffer in test_dqn without weight update
* weight default set to 1
* fix sampling bug when buffer is not full
* rename parameter
* fix formula error, add accuracy check
* add PrioritizedDQN test
* add test_pdqn.py
* add update_weight() doc
* add ref of prio dqn in readme.md and index.rst
* restore test_dqn.py, fix args of test_pdqn.py