Tianshou/test/discrete/test_il_crr.py
n+e fc251ab0b8
bump to v0.4.3 (#432)
* add makefile
* bump version
* add isort and yapf
* update contributing.md
* update PR template
* spelling check
2021-09-03 05:05:04 +08:00

134 lines
4.0 KiB
Python

import argparse
import os
import pickle
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector
from tianshou.env import DummyVectorEnv
from tianshou.policy import DiscreteCRRPolicy
from tianshou.trainer import offline_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--update-per-epoch", type=int, default=1000)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument(
"--load-buffer-name",
type=str,
default="./expert_DQN_CartPole-v0.pkl",
)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
args = parser.parse_known_args()[0]
return args
def test_discrete_crr(args=get_args()):
# envs
env = gym.make(args.task)
if args.task == 'CartPole-v0':
env.spec.reward_threshold = 190 # lower the goal
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=False
)
critic = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=False
)
optim = torch.optim.Adam(
list(actor.parameters()) + list(critic.parameters()), lr=args.lr
)
policy = DiscreteCRRPolicy(
actor,
critic,
optim,
args.gamma,
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
assert os.path.exists(args.load_buffer_name), \
"Please run test_dqn.py first to get expert's data buffer."
buffer = pickle.load(open(args.load_buffer_name, "rb"))
# collector
test_collector = Collector(policy, test_envs, exploration_noise=True)
log_path = os.path.join(args.logdir, args.task, 'discrete_cql')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
result = offline_trainer(
policy,
buffer,
test_collector,
args.epoch,
args.update_per_epoch,
args.test_num,
args.batch_size,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_discrete_crr(get_args())