Tianshou/tianshou/env/venv_wrappers.py
Markus Krimmel 6c6c872523
Gymnasium Integration (#789)
Changes:
- Disclaimer in README
- Replaced all occurences of Gym with Gymnasium
- Removed code that is now dead since we no longer need to support the
old step API
- Updated type hints to only allow new step API
- Increased required version of envpool to support Gymnasium
- Increased required version of PettingZoo to support Gymnasium
- Updated `PettingZooEnv` to only use the new step API, removed hack to
also support old API
- I had to add some `# type: ignore` comments, due to new type hinting
in Gymnasium. I'm not that familiar with type hinting but I believe that
the issue is on the Gymnasium side and we are looking into it.
- Had to update `MyTestEnv` to support `options` kwarg
- Skip NNI tests because they still use OpenAI Gym
- Also allow `PettingZooEnv` in vector environment
- Updated doc page about ReplayBuffer to also talk about terminated and
truncated flags.

Still need to do: 
- Update the Jupyter notebooks in docs
- Check the entire code base for more dead code (from compatibility
stuff)
- Check the reset functions of all environments/wrappers in code base to
make sure they use the `options` kwarg
- Someone might want to check test_env_finite.py
- Is it okay to allow `PettingZooEnv` in vector environments? Might need
to update docs?
2023-02-03 11:57:27 -08:00

124 lines
3.6 KiB
Python

from typing import Any, List, Optional, Tuple, Union
import numpy as np
from tianshou.env.utils import gym_new_venv_step_type
from tianshou.env.venvs import GYM_RESERVED_KEYS, BaseVectorEnv
from tianshou.utils import RunningMeanStd
class VectorEnvWrapper(BaseVectorEnv):
"""Base class for vectorized environments wrapper."""
def __init__(self, venv: BaseVectorEnv) -> None:
self.venv = venv
self.is_async = venv.is_async
def __len__(self) -> int:
return len(self.venv)
def __getattribute__(self, key: str) -> Any:
if key in GYM_RESERVED_KEYS: # reserved keys in gym.Env
return getattr(self.venv, key)
else:
return super().__getattribute__(key)
def get_env_attr(
self,
key: str,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> List[Any]:
return self.venv.get_env_attr(key, id)
def set_env_attr(
self,
key: str,
value: Any,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> None:
return self.venv.set_env_attr(key, value, id)
def reset(
self,
id: Optional[Union[int, List[int], np.ndarray]] = None,
**kwargs: Any,
) -> Tuple[np.ndarray, Union[dict, List[dict]]]:
return self.venv.reset(id, **kwargs)
def step(
self,
action: np.ndarray,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> gym_new_venv_step_type:
return self.venv.step(action, id)
def seed(
self,
seed: Optional[Union[int, List[int]]] = None,
) -> List[Optional[List[int]]]:
return self.venv.seed(seed)
def render(self, **kwargs: Any) -> List[Any]:
return self.venv.render(**kwargs)
def close(self) -> None:
self.venv.close()
class VectorEnvNormObs(VectorEnvWrapper):
"""An observation normalization wrapper for vectorized environments.
:param bool update_obs_rms: whether to update obs_rms. Default to True.
"""
def __init__(
self,
venv: BaseVectorEnv,
update_obs_rms: bool = True,
) -> None:
super().__init__(venv)
# initialize observation running mean/std
self.update_obs_rms = update_obs_rms
self.obs_rms = RunningMeanStd()
def reset(
self,
id: Optional[Union[int, List[int], np.ndarray]] = None,
**kwargs: Any,
) -> Tuple[np.ndarray, Union[dict, List[dict]]]:
obs, info = self.venv.reset(id, **kwargs)
if isinstance(obs, tuple): # type: ignore
raise TypeError(
"Tuple observation space is not supported. ",
"Please change it to array or dict space",
)
if self.obs_rms and self.update_obs_rms:
self.obs_rms.update(obs)
obs = self._norm_obs(obs)
return obs, info
def step(
self,
action: np.ndarray,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> gym_new_venv_step_type:
step_results = self.venv.step(action, id)
if self.obs_rms and self.update_obs_rms:
self.obs_rms.update(step_results[0])
return (self._norm_obs(step_results[0]), *step_results[1:])
def _norm_obs(self, obs: np.ndarray) -> np.ndarray:
if self.obs_rms:
return self.obs_rms.norm(obs) # type: ignore
return obs
def set_obs_rms(self, obs_rms: RunningMeanStd) -> None:
"""Set with given observation running mean/std."""
self.obs_rms = obs_rms
def get_obs_rms(self) -> RunningMeanStd:
"""Return observation running mean/std."""
return self.obs_rms