# Changes ## Dependencies - New extra "eval" ## Api Extension - `Experiment` and `ExperimentConfig` now have a `name`, that can however be overridden when `Experiment.run()` is called - When building an `Experiment` from an `ExperimentConfig`, the user has the option to add info about seeds to the name. - New method in `ExperimentConfig` called `build_default_seeded_experiments` - `SamplingConfig` has an explicit training seed, `test_seed` is inferred. - New `evaluation` package for repeating the same experiment with multiple seeds and aggregating the results (important extension!). Currently in alpha state. - Loggers can now restore the logged data into python by using the new `restore_logged_data` ## Breaking Changes - `AtariEnvFactory` (in examples) now receives explicit train and test seeds - `EnvFactoryRegistered` now requires an explicit `test_seed` - `BaseLogger.prepare_dict_for_logging` is now abstract --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
104 lines
3.2 KiB
Python
104 lines
3.2 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import os
|
|
from collections.abc import Sequence
|
|
|
|
from examples.atari.atari_network import (
|
|
IntermediateModuleFactoryAtariDQN,
|
|
)
|
|
from examples.atari.atari_wrapper import AtariEnvFactory, AtariEpochStopCallback
|
|
from tianshou.highlevel.config import SamplingConfig
|
|
from tianshou.highlevel.experiment import (
|
|
ExperimentConfig,
|
|
IQNExperimentBuilder,
|
|
)
|
|
from tianshou.highlevel.params.policy_params import IQNParams
|
|
from tianshou.highlevel.trainer import (
|
|
EpochTestCallbackDQNSetEps,
|
|
EpochTrainCallbackDQNEpsLinearDecay,
|
|
)
|
|
from tianshou.utils import logging
|
|
from tianshou.utils.logging import datetime_tag
|
|
|
|
|
|
def main(
|
|
experiment_config: ExperimentConfig,
|
|
task: str = "PongNoFrameskip-v4",
|
|
scale_obs: bool = False,
|
|
eps_test: float = 0.005,
|
|
eps_train: float = 1.0,
|
|
eps_train_final: float = 0.05,
|
|
buffer_size: int = 100000,
|
|
lr: float = 0.0001,
|
|
gamma: float = 0.99,
|
|
sample_size: int = 32,
|
|
online_sample_size: int = 8,
|
|
target_sample_size: int = 8,
|
|
num_cosines: int = 64,
|
|
hidden_sizes: Sequence[int] = (512,),
|
|
n_step: int = 3,
|
|
target_update_freq: int = 500,
|
|
epoch: int = 100,
|
|
step_per_epoch: int = 100000,
|
|
step_per_collect: int = 10,
|
|
update_per_step: float = 0.1,
|
|
batch_size: int = 32,
|
|
training_num: int = 10,
|
|
test_num: int = 10,
|
|
frames_stack: int = 4,
|
|
save_buffer_name: str | None = None, # TODO support?
|
|
) -> None:
|
|
log_name = os.path.join(task, "iqn", str(experiment_config.seed), datetime_tag())
|
|
|
|
sampling_config = SamplingConfig(
|
|
num_epochs=epoch,
|
|
step_per_epoch=step_per_epoch,
|
|
batch_size=batch_size,
|
|
num_train_envs=training_num,
|
|
num_test_envs=test_num,
|
|
buffer_size=buffer_size,
|
|
step_per_collect=step_per_collect,
|
|
update_per_step=update_per_step,
|
|
repeat_per_collect=None,
|
|
replay_buffer_stack_num=frames_stack,
|
|
replay_buffer_ignore_obs_next=True,
|
|
replay_buffer_save_only_last_obs=True,
|
|
)
|
|
|
|
env_factory = AtariEnvFactory(
|
|
task,
|
|
sampling_config.train_seed,
|
|
sampling_config.test_seed,
|
|
frames_stack,
|
|
scale=scale_obs,
|
|
)
|
|
|
|
experiment = (
|
|
IQNExperimentBuilder(env_factory, experiment_config, sampling_config)
|
|
.with_iqn_params(
|
|
IQNParams(
|
|
discount_factor=gamma,
|
|
estimation_step=n_step,
|
|
lr=lr,
|
|
sample_size=sample_size,
|
|
online_sample_size=online_sample_size,
|
|
target_update_freq=target_update_freq,
|
|
target_sample_size=target_sample_size,
|
|
hidden_sizes=hidden_sizes,
|
|
num_cosines=num_cosines,
|
|
),
|
|
)
|
|
.with_preprocess_network_factory(IntermediateModuleFactoryAtariDQN(features_only=True))
|
|
.with_epoch_train_callback(
|
|
EpochTrainCallbackDQNEpsLinearDecay(eps_train, eps_train_final),
|
|
)
|
|
.with_epoch_test_callback(EpochTestCallbackDQNSetEps(eps_test))
|
|
.with_epoch_stop_callback(AtariEpochStopCallback(task))
|
|
.build()
|
|
)
|
|
experiment.run(override_experiment_name=log_name)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.run_cli(main)
|