Feature/algo eval (#1074)

# Changes

## Dependencies

- New extra "eval"

## Api Extension
- `Experiment` and `ExperimentConfig` now have a `name`, that can
however be overridden when `Experiment.run()` is called
- When building an `Experiment` from an `ExperimentConfig`, the user has
the option to add info about seeds to the name.
- New method in `ExperimentConfig` called
`build_default_seeded_experiments`
- `SamplingConfig` has an explicit training seed, `test_seed` is
inferred.
- New `evaluation` package for repeating the same experiment with
multiple seeds and aggregating the results (important extension!).
Currently in alpha state.
- Loggers can now restore the logged data into python by using the new
`restore_logged_data`

## Breaking Changes
- `AtariEnvFactory` (in examples) now receives explicit train and test
seeds
- `EnvFactoryRegistered` now requires an explicit `test_seed`
- `BaseLogger.prepare_dict_for_logging` is now abstract

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
This commit is contained in:
maxhuettenrauch 2024-04-21 01:25:33 +02:00 committed by GitHub
parent 9c0b3e7292
commit ade85ab32b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
38 changed files with 1655 additions and 153 deletions

View File

@ -29,7 +29,7 @@ jobs:
key: venv-${{ hashFiles('poetry.lock') }}
- name: Install the project dependencies
run: |
poetry install --with dev
poetry install --with dev --extras "eval"
- name: Lint
run: poetry run poe lint
- name: Types

View File

@ -33,7 +33,7 @@ jobs:
key: venv-${{ hashFiles('poetry.lock') }}
- name: Install the project dependencies
run: |
poetry install --with dev --extras "envpool"
poetry install --with dev --extras "envpool eval"
- name: wandb login
run: |
poetry run wandb login e2366d661b89f2bee877c40bee15502d67b7abef

View File

@ -261,4 +261,8 @@ BA
BH
BO
BD
configs
postfix
backend
rliable
hl

View File

@ -66,7 +66,13 @@ def main(
replay_buffer_save_only_last_obs=True,
)
env_factory = AtariEnvFactory(task, experiment_config.seed, frames_stack, scale=scale_obs)
env_factory = AtariEnvFactory(
task,
sampling_config.train_seed,
sampling_config.test_seed,
frames_stack,
scale=scale_obs,
)
builder = (
DQNExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -98,7 +104,7 @@ def main(
)
experiment = builder.build()
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -65,7 +65,13 @@ def main(
replay_buffer_save_only_last_obs=True,
)
env_factory = AtariEnvFactory(task, experiment_config.seed, frames_stack, scale=scale_obs)
env_factory = AtariEnvFactory(
task,
sampling_config.train_seed,
sampling_config.test_seed,
frames_stack,
scale=scale_obs,
)
experiment = (
IQNExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -90,7 +96,7 @@ def main(
.with_epoch_stop_callback(AtariEpochStopCallback(task))
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -70,7 +70,13 @@ def main(
replay_buffer_save_only_last_obs=True,
)
env_factory = AtariEnvFactory(task, experiment_config.seed, frames_stack)
env_factory = AtariEnvFactory(
task,
sampling_config.train_seed,
sampling_config.test_seed,
frames_stack,
scale=scale_obs,
)
builder = (
PPOExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -109,7 +115,7 @@ def main(
),
)
experiment = builder.build()
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -66,7 +66,13 @@ def main(
replay_buffer_save_only_last_obs=True,
)
env_factory = AtariEnvFactory(task, experiment_config.seed, frames_stack, scale=scale_obs)
env_factory = AtariEnvFactory(
task,
sampling_config.train_seed,
sampling_config.test_seed,
frames_stack,
scale=scale_obs,
)
builder = (
DiscreteSACExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -97,7 +103,7 @@ def main(
),
)
experiment = builder.build()
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -383,7 +383,7 @@ def make_atari_env(
:return: a tuple of (single env, training envs, test envs).
"""
env_factory = AtariEnvFactory(task, seed, frame_stack, scale=bool(scale))
env_factory = AtariEnvFactory(task, seed, seed + training_num, frame_stack, scale=bool(scale))
envs = env_factory.create_envs(training_num, test_num)
return envs.env, envs.train_envs, envs.test_envs
@ -392,7 +392,8 @@ class AtariEnvFactory(EnvFactoryRegistered):
def __init__(
self,
task: str,
seed: int,
train_seed: int,
test_seed: int,
frame_stack: int,
scale: bool = False,
use_envpool_if_available: bool = True,
@ -409,7 +410,8 @@ class AtariEnvFactory(EnvFactoryRegistered):
log.info("Not using envpool, because it is not available")
super().__init__(
task=task,
seed=seed,
train_seed=train_seed,
test_seed=test_seed,
venv_type=VectorEnvType.SUBPROC_SHARED_MEM,
envpool_factory=envpool_factory,
)

View File

@ -16,7 +16,13 @@ from tianshou.utils.logging import run_main
def main() -> None:
experiment = (
DQNExperimentBuilder(
EnvFactoryRegistered(task="CartPole-v1", seed=0, venv_type=VectorEnvType.DUMMY),
EnvFactoryRegistered(
task="CartPole-v1",
seed=0,
venv_type=VectorEnvType.DUMMY,
train_seed=0,
test_seed=10,
),
ExperimentConfig(
persistence_enabled=False,
watch=True,

View File

@ -54,7 +54,12 @@ def main(
repeat_per_collect=repeat_per_collect,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=True,
)
experiment = (
A2CExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -78,7 +83,7 @@ def main(
.with_critic_factory_default(hidden_sizes, nn.Tanh)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -51,7 +51,12 @@ def main(
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=False,
)
experiment = (
DDPGExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -69,7 +74,7 @@ def main(
.with_critic_factory_default(hidden_sizes)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -37,7 +37,7 @@ def make_mujoco_env(
:return: a tuple of (single env, training envs, test envs).
"""
envs = MujocoEnvFactory(task, seed, obs_norm=obs_norm).create_envs(
envs = MujocoEnvFactory(task, seed, seed + num_train_envs, obs_norm=obs_norm).create_envs(
num_train_envs,
num_test_envs,
)
@ -73,13 +73,15 @@ class MujocoEnvFactory(EnvFactoryRegistered):
def __init__(
self,
task: str,
seed: int,
train_seed: int,
test_seed: int,
obs_norm: bool = True,
venv_type: VectorEnvType = VectorEnvType.SUBPROC_SHARED_MEM,
) -> None:
super().__init__(
task=task,
seed=seed,
train_seed=train_seed,
test_seed=test_seed,
venv_type=venv_type,
envpool_factory=EnvPoolFactory() if envpool_is_available else None,
)

View File

@ -56,7 +56,12 @@ def main(
repeat_per_collect=repeat_per_collect,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=True,
)
experiment = (
NPGExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -80,7 +85,7 @@ def main(
.with_critic_factory_default(hidden_sizes, torch.nn.Tanh)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -61,7 +61,12 @@ def main(
repeat_per_collect=repeat_per_collect,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=True,
)
experiment = (
PPOExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -90,7 +95,7 @@ def main(
.with_critic_factory_default(hidden_sizes, torch.nn.Tanh)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -0,0 +1,184 @@
#!/usr/bin/env python3
"""The high-level multi experiment script demonstrates how to use the high-level API of TianShou to train
a single configuration of an experiment (here a PPO agent on mujoco) with multiple non-intersecting seeds.
Thus, the experiment will be repeated `num_experiments` times.
For each repetition, a policy seed, train env seeds, and test env seeds are set that
are non-intersecting with the seeds of the other experiments.
Each experiment's results are stored in a separate subdirectory.
The final results are aggregated and turned into useful statistics with the rliable API.
The call to `eval_experiments` will load the results from the log directory and
create an interp-quantile mean plot for the returns as well as a performance profile plot.
These plots are saved in the log directory and displayed in the console.
"""
import os
import sys
from collections.abc import Sequence
from typing import Literal
import torch
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.evaluation.launcher import RegisteredExpLauncher
from tianshou.evaluation.rliable_evaluation_hl import RLiableExperimentResult
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.env import VectorEnvType
from tianshou.highlevel.experiment import (
ExperimentConfig,
PPOExperimentBuilder,
)
from tianshou.highlevel.logger import LoggerFactoryDefault
from tianshou.highlevel.params.dist_fn import (
DistributionFunctionFactoryIndependentGaussians,
)
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
from tianshou.highlevel.params.policy_params import PPOParams
from tianshou.utils import logging
from tianshou.utils.logging import datetime_tag
log = logging.getLogger(__name__)
def main(
experiment_config: ExperimentConfig,
task: str = "Ant-v4",
num_experiments: int = 5,
buffer_size: int = 4096,
hidden_sizes: Sequence[int] = (64, 64),
lr: float = 3e-4,
gamma: float = 0.99,
epoch: int = 3,
step_per_epoch: int = 30000,
step_per_collect: int = 2048,
repeat_per_collect: int = 10,
batch_size: int = 64,
training_num: int = 10,
test_num: int = 10,
rew_norm: bool = True,
vf_coef: float = 0.25,
ent_coef: float = 0.0,
gae_lambda: float = 0.95,
bound_action_method: Literal["clip", "tanh"] | None = "clip",
lr_decay: bool = True,
max_grad_norm: float = 0.5,
eps_clip: float = 0.2,
dual_clip: float | None = None,
value_clip: bool = False,
norm_adv: bool = False,
recompute_adv: bool = True,
run_experiments_sequentially: bool = True,
) -> str:
"""Use the high-level API of TianShou to evaluate the PPO algorithm on a MuJoCo environment with multiple seeds for
a given configuration. The results for each run are stored in separate sub-folders. After the agents are trained,
the results are evaluated using the rliable API.
:param experiment_config:
:param task: a mujoco task name
:param num_experiments: how many experiments to run with different seeds
:param buffer_size:
:param hidden_sizes:
:param lr:
:param gamma:
:param epoch:
:param step_per_epoch:
:param step_per_collect:
:param repeat_per_collect:
:param batch_size:
:param training_num:
:param test_num:
:param rew_norm:
:param vf_coef:
:param ent_coef:
:param gae_lambda:
:param bound_action_method:
:param lr_decay:
:param max_grad_norm:
:param eps_clip:
:param dual_clip:
:param value_clip:
:param norm_adv:
:param recompute_adv:
:param run_experiments_sequentially: if True, the experiments are run sequentially, otherwise in parallel.
LIMITATIONS: currently, the parallel execution does not seem to work properly on linux.
It might generally be undesired to run multiple experiments in parallel on the same machine,
as a single experiment already uses all available CPU cores by default.
:return: the directory where the results are stored
"""
persistence_dir = os.path.abspath(os.path.join("log", task, "ppo", datetime_tag()))
experiment_config.persistence_base_dir = persistence_dir
log.info(f"Will save all experiment results to {persistence_dir}.")
experiment_config.watch = False
sampling_config = SamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
batch_size=batch_size,
num_train_envs=training_num,
num_test_envs=test_num,
num_test_episodes=test_num,
buffer_size=buffer_size,
step_per_collect=step_per_collect,
repeat_per_collect=repeat_per_collect,
)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=True,
venv_type=VectorEnvType.SUBPROC_SHARED_MEM_FORK_CONTEXT
if sys.platform == "darwin"
else VectorEnvType.SUBPROC_SHARED_MEM,
)
experiments = (
PPOExperimentBuilder(env_factory, experiment_config, sampling_config)
.with_ppo_params(
PPOParams(
discount_factor=gamma,
gae_lambda=gae_lambda,
action_bound_method=bound_action_method,
reward_normalization=rew_norm,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
value_clip=value_clip,
advantage_normalization=norm_adv,
eps_clip=eps_clip,
dual_clip=dual_clip,
recompute_advantage=recompute_adv,
lr=lr,
lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
if lr_decay
else None,
dist_fn=DistributionFunctionFactoryIndependentGaussians(),
),
)
.with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True)
.with_critic_factory_default(hidden_sizes, torch.nn.Tanh)
.with_logger_factory(LoggerFactoryDefault("tensorboard"))
.build_default_seeded_experiments(num_experiments)
)
if run_experiments_sequentially:
launcher = RegisteredExpLauncher.sequential.create_launcher()
else:
launcher = RegisteredExpLauncher.joblib.create_launcher()
launcher.launch(experiments)
return persistence_dir
def eval_experiments(log_dir: str) -> RLiableExperimentResult:
"""Evaluate the experiments in the given log directory using the rliable API."""
rliable_result = RLiableExperimentResult.load_from_disk(log_dir)
rliable_result.eval_results(show_plots=True, save_plots=True)
return rliable_result
if __name__ == "__main__":
log_dir = logging.run_cli(main, level=logging.INFO)
assert isinstance(log_dir, str) # for mypy
evaluation_result = eval_experiments(log_dir)

View File

@ -57,7 +57,12 @@ def main(
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=False,
)
experiment = (
REDQExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -78,7 +83,7 @@ def main(
.with_critic_ensemble_factory_default(hidden_sizes)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -49,7 +49,12 @@ def main(
repeat_per_collect=repeat_per_collect,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=True,
)
experiment = (
PGExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -67,7 +72,7 @@ def main(
.with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -52,7 +52,12 @@ def main(
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=False,
)
experiment = (
SACExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -75,7 +80,7 @@ def main(
.with_common_critic_factory_default(hidden_sizes)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -58,7 +58,12 @@ def main(
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=False,
)
experiment = (
TD3ExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -80,7 +85,7 @@ def main(
.with_common_critic_factory_default(hidden_sizes, torch.nn.Tanh)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

View File

@ -58,7 +58,12 @@ def main(
repeat_per_collect=repeat_per_collect,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=True,
)
experiment = (
TRPOExperimentBuilder(env_factory, experiment_config, sampling_config)
@ -84,7 +89,7 @@ def main(
.with_critic_factory_default(hidden_sizes, torch.nn.Tanh)
.build()
)
experiment.run(log_name)
experiment.run(override_experiment_name=log_name)
if __name__ == "__main__":

690
poetry.lock generated
View File

@ -152,6 +152,45 @@ files = [
{file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"},
]
[[package]]
name = "arch"
version = "5.3.1"
description = "ARCH for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "arch-5.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:75fa6f9386ecc2df81bcbf5d055a290a697482ca51e0b3459dab183d288993cb"},
{file = "arch-5.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f9c9220d331618322517e0f2b3b3529f9c51f5e5a891441da4a107fd2d6d7fce"},
{file = "arch-5.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c503acacf88786a78c0ea6606e292c7bfa66e42603c72b7d9fe8dca021a9ddf"},
{file = "arch-5.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92dbbae9bc19aa38492a1b5968d855e7f69f18e626bfba3dd42e43182ea7907d"},
{file = "arch-5.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:522e19656759a9b8408cda652ddadaf8e65e23aff433c4b22a11ea79bd3c2b67"},
{file = "arch-5.3.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4c23b5138198127bc1a7ec432139fbe855d399e51f6391125b5dc3ab2f4a7860"},
{file = "arch-5.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadb88a0199b51c6134634618fd074ffbb430a5d3c43126da0b6d259447e1f36"},
{file = "arch-5.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96eb779fd90f16787376bc3ada24f3e162bc74f746d1fc3fb809ec36f954007e"},
{file = "arch-5.3.1-cp37-cp37m-win32.whl", hash = "sha256:7694ea6085bf817e09ddc8fcb4a871a0f255d3b6b486696cfa16121df591fdb9"},
{file = "arch-5.3.1-cp37-cp37m-win_amd64.whl", hash = "sha256:32df883248a7d6f7ee204bf9ccb4a141ece43ab3b06ee22627cb84c8b4b7d24b"},
{file = "arch-5.3.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ef94fd5738fc0bccc4ee8a27871d5d7052b3962d784b397acf7f7bcc3afc34f4"},
{file = "arch-5.3.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:74e629d33ff41ab2a0917f475703826fd3c0976a3dc236873b19b41f719afe5b"},
{file = "arch-5.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84c3944a47d28923bad70a7a6a11081d55482b80ef6abb8581a7f98e05ec9584"},
{file = "arch-5.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b862462dd22297073b772e08144f31b7be05080b4063de5ce794c969d0348a94"},
{file = "arch-5.3.1-cp38-cp38-win32.whl", hash = "sha256:ae2e8026085ca841e6c31144913462e79706c8604e46deda4558ec252a4c5833"},
{file = "arch-5.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:0cb9b0c5751a3a0ecefe47842b40a04dae393d7754489128ec22df0649d49b52"},
{file = "arch-5.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:03a5cb976ffb230f59d827242e072cf605f70a993be0e7069d30378e13cb60f5"},
{file = "arch-5.3.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:38857f8b2ca2fc46c7e1ac7889354eb4f16e7360283586a3730004097648b539"},
{file = "arch-5.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd37af7633ae1d5d5719b5eaa7ed97b9a3450f2ed699e188c2c67f7e88ca7b44"},
{file = "arch-5.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:236a8dc7414d557a59cae5dd39efff4fb49ab3fb792b68212f6c03a0c088d947"},
{file = "arch-5.3.1-cp39-cp39-win32.whl", hash = "sha256:aabfc7b96416d6b3054164292ee364d1e86d2906a152faf1489562ba1669b2df"},
{file = "arch-5.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:bed3352ab7d4ae79a206acb618f786a3f4bc4080e1b90f8c0b19c5a070a365a0"},
{file = "arch-5.3.1.tar.gz", hash = "sha256:106f15c8770a34f71239b6c88f8517814e6b7fea3b8f2e009b3a8a23fd7e77c2"},
]
[package.dependencies]
numpy = ">=1.17"
pandas = ">=1.0"
property-cached = ">=1.6.4"
scipy = ">=1.3"
statsmodels = ">=0.11"
[[package]]
name = "argon2-cffi"
version = "23.1.0"
@ -719,6 +758,69 @@ traitlets = ">=4"
[package.extras]
test = ["pytest"]
[[package]]
name = "contourpy"
version = "1.2.1"
description = "Python library for calculating contours of 2D quadrilateral grids"
optional = false
python-versions = ">=3.9"
files = [
{file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"},
{file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"},
{file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"},
{file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"},
{file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"},
{file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"},
{file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"},
{file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"},
{file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"},
{file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"},
{file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"},
{file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"},
{file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"},
{file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"},
{file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"},
{file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"},
{file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"},
{file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"},
{file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"},
{file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"},
{file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"},
{file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"},
{file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"},
{file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"},
{file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"},
{file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"},
{file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"},
{file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"},
]
[package.dependencies]
numpy = ">=1.20"
[package.extras]
bokeh = ["bokeh", "selenium"]
docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"]
mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"]
test = ["Pillow", "contourpy[test-no-images]", "matplotlib"]
test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"]
[[package]]
name = "coverage"
version = "7.3.2"
@ -798,6 +900,21 @@ files = [
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["cssselect", "importlib-resources", "jaraco.test (>=5.1)", "lxml", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff"]
[[package]]
name = "cycler"
version = "0.12.1"
description = "Composable style cycles"
optional = false
python-versions = ">=3.8"
files = [
{file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
{file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
]
[package.extras]
docs = ["ipython", "matplotlib", "numpydoc", "sphinx"]
tests = ["pytest", "pytest-cov", "pytest-xdist"]
[[package]]
name = "cython"
version = "3.0.8"
@ -1174,6 +1291,71 @@ docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1
testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"]
typing = ["typing-extensions (>=4.8)"]
[[package]]
name = "fonttools"
version = "4.51.0"
description = "Tools to manipulate font files"
optional = false
python-versions = ">=3.8"
files = [
{file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:84d7751f4468dd8cdd03ddada18b8b0857a5beec80bce9f435742abc9a851a74"},
{file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8b4850fa2ef2cfbc1d1f689bc159ef0f45d8d83298c1425838095bf53ef46308"},
{file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5b48a1121117047d82695d276c2af2ee3a24ffe0f502ed581acc2673ecf1037"},
{file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:180194c7fe60c989bb627d7ed5011f2bef1c4d36ecf3ec64daec8302f1ae0716"},
{file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:96a48e137c36be55e68845fc4284533bda2980f8d6f835e26bca79d7e2006438"},
{file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:806e7912c32a657fa39d2d6eb1d3012d35f841387c8fc6cf349ed70b7c340039"},
{file = "fonttools-4.51.0-cp310-cp310-win32.whl", hash = "sha256:32b17504696f605e9e960647c5f64b35704782a502cc26a37b800b4d69ff3c77"},
{file = "fonttools-4.51.0-cp310-cp310-win_amd64.whl", hash = "sha256:c7e91abdfae1b5c9e3a543f48ce96013f9a08c6c9668f1e6be0beabf0a569c1b"},
{file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a8feca65bab31479d795b0d16c9a9852902e3a3c0630678efb0b2b7941ea9c74"},
{file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ac27f436e8af7779f0bb4d5425aa3535270494d3bc5459ed27de3f03151e4c2"},
{file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e19bd9e9964a09cd2433a4b100ca7f34e34731e0758e13ba9a1ed6e5468cc0f"},
{file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2b92381f37b39ba2fc98c3a45a9d6383bfc9916a87d66ccb6553f7bdd129097"},
{file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5f6bc991d1610f5c3bbe997b0233cbc234b8e82fa99fc0b2932dc1ca5e5afec0"},
{file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9696fe9f3f0c32e9a321d5268208a7cc9205a52f99b89479d1b035ed54c923f1"},
{file = "fonttools-4.51.0-cp311-cp311-win32.whl", hash = "sha256:3bee3f3bd9fa1d5ee616ccfd13b27ca605c2b4270e45715bd2883e9504735034"},
{file = "fonttools-4.51.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f08c901d3866a8905363619e3741c33f0a83a680d92a9f0e575985c2634fcc1"},
{file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4060acc2bfa2d8e98117828a238889f13b6f69d59f4f2d5857eece5277b829ba"},
{file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1250e818b5f8a679ad79660855528120a8f0288f8f30ec88b83db51515411fcc"},
{file = "fonttools-4.51.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76f1777d8b3386479ffb4a282e74318e730014d86ce60f016908d9801af9ca2a"},
{file = "fonttools-4.51.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b5ad456813d93b9c4b7ee55302208db2b45324315129d85275c01f5cb7e61a2"},
{file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68b3fb7775a923be73e739f92f7e8a72725fd333eab24834041365d2278c3671"},
{file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e2f1a4499e3b5ee82c19b5ee57f0294673125c65b0a1ff3764ea1f9db2f9ef5"},
{file = "fonttools-4.51.0-cp312-cp312-win32.whl", hash = "sha256:278e50f6b003c6aed19bae2242b364e575bcb16304b53f2b64f6551b9c000e15"},
{file = "fonttools-4.51.0-cp312-cp312-win_amd64.whl", hash = "sha256:b3c61423f22165541b9403ee39874dcae84cd57a9078b82e1dce8cb06b07fa2e"},
{file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1621ee57da887c17312acc4b0e7ac30d3a4fb0fec6174b2e3754a74c26bbed1e"},
{file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e9d9298be7a05bb4801f558522adbe2feea1b0b103d5294ebf24a92dd49b78e5"},
{file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee1af4be1c5afe4c96ca23badd368d8dc75f611887fb0c0dac9f71ee5d6f110e"},
{file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c18b49adc721a7d0b8dfe7c3130c89b8704baf599fb396396d07d4aa69b824a1"},
{file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de7c29bdbdd35811f14493ffd2534b88f0ce1b9065316433b22d63ca1cd21f14"},
{file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cadf4e12a608ef1d13e039864f484c8a968840afa0258b0b843a0556497ea9ed"},
{file = "fonttools-4.51.0-cp38-cp38-win32.whl", hash = "sha256:aefa011207ed36cd280babfaa8510b8176f1a77261833e895a9d96e57e44802f"},
{file = "fonttools-4.51.0-cp38-cp38-win_amd64.whl", hash = "sha256:865a58b6e60b0938874af0968cd0553bcd88e0b2cb6e588727117bd099eef836"},
{file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:60a3409c9112aec02d5fb546f557bca6efa773dcb32ac147c6baf5f742e6258b"},
{file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f7e89853d8bea103c8e3514b9f9dc86b5b4120afb4583b57eb10dfa5afbe0936"},
{file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56fc244f2585d6c00b9bcc59e6593e646cf095a96fe68d62cd4da53dd1287b55"},
{file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d145976194a5242fdd22df18a1b451481a88071feadf251221af110ca8f00ce"},
{file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c5b8cab0c137ca229433570151b5c1fc6af212680b58b15abd797dcdd9dd5051"},
{file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:54dcf21a2f2d06ded676e3c3f9f74b2bafded3a8ff12f0983160b13e9f2fb4a7"},
{file = "fonttools-4.51.0-cp39-cp39-win32.whl", hash = "sha256:0118ef998a0699a96c7b28457f15546815015a2710a1b23a7bf6c1be60c01636"},
{file = "fonttools-4.51.0-cp39-cp39-win_amd64.whl", hash = "sha256:599bdb75e220241cedc6faebfafedd7670335d2e29620d207dd0378a4e9ccc5a"},
{file = "fonttools-4.51.0-py3-none-any.whl", hash = "sha256:15c94eeef6b095831067f72c825eb0e2d48bb4cea0647c1b05c981ecba2bf39f"},
{file = "fonttools-4.51.0.tar.gz", hash = "sha256:dc0673361331566d7a663d7ce0f6fdcbfbdc1f59c6e3ed1165ad7202ca183c68"},
]
[package.extras]
all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"]
graphite = ["lz4 (>=1.7.4.2)"]
interpolatable = ["munkres", "pycairo", "scipy"]
lxml = ["lxml (>=4.0)"]
pathops = ["skia-pathops (>=0.5.0)"]
plot = ["matplotlib"]
repacker = ["uharfbuzz (>=0.23.0)"]
symfont = ["sympy"]
type1 = ["xattr"]
ufo = ["fs (>=2.2.0,<3)"]
unicode = ["unicodedata2 (>=15.1.0)"]
woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
[[package]]
name = "fqdn"
version = "1.5.1"
@ -1940,6 +2122,17 @@ MarkupSafe = ">=2.0"
[package.extras]
i18n = ["Babel (>=2.7)"]
[[package]]
name = "joblib"
version = "1.4.0"
description = "Lightweight pipelining with Python functions"
optional = true
python-versions = ">=3.8"
files = [
{file = "joblib-1.4.0-py3-none-any.whl", hash = "sha256:42942470d4062537be4d54c83511186da1fc14ba354961a2114da91efa9a4ed7"},
{file = "joblib-1.4.0.tar.gz", hash = "sha256:1eb0dc091919cd384490de890cb5dfd538410a6d4b3b54eef09fb8c50b409b1c"},
]
[[package]]
name = "json5"
version = "0.9.14"
@ -2362,6 +2555,119 @@ files = [
{file = "jupyterlab_widgets-3.0.9.tar.gz", hash = "sha256:6005a4e974c7beee84060fdfba341a3218495046de8ae3ec64888e5fe19fdb4c"},
]
[[package]]
name = "kiwisolver"
version = "1.4.5"
description = "A fast implementation of the Cassowary constraint solver"
optional = false
python-versions = ">=3.7"
files = [
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"},
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"},
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"},
{file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"},
{file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"},
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"},
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"},
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"},
{file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"},
{file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"},
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"},
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"},
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"},
{file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"},
{file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"},
{file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"},
{file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"},
{file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"},
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"},
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"},
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"},
{file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"},
{file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"},
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"},
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"},
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"},
{file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"},
{file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"},
{file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
]
[[package]]
name = "latexcodec"
version = "2.0.1"
@ -2537,6 +2843,54 @@ files = [
{file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"},
]
[[package]]
name = "matplotlib"
version = "3.8.4"
description = "Python plotting package"
optional = false
python-versions = ">=3.9"
files = [
{file = "matplotlib-3.8.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:abc9d838f93583650c35eca41cfcec65b2e7cb50fd486da6f0c49b5e1ed23014"},
{file = "matplotlib-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f65c9f002d281a6e904976007b2d46a1ee2bcea3a68a8c12dda24709ddc9106"},
{file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce1edd9f5383b504dbc26eeea404ed0a00656c526638129028b758fd43fc5f10"},
{file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecd79298550cba13a43c340581a3ec9c707bd895a6a061a78fa2524660482fc0"},
{file = "matplotlib-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:90df07db7b599fe7035d2f74ab7e438b656528c68ba6bb59b7dc46af39ee48ef"},
{file = "matplotlib-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:ac24233e8f2939ac4fd2919eed1e9c0871eac8057666070e94cbf0b33dd9c338"},
{file = "matplotlib-3.8.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:72f9322712e4562e792b2961971891b9fbbb0e525011e09ea0d1f416c4645661"},
{file = "matplotlib-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:232ce322bfd020a434caaffbd9a95333f7c2491e59cfc014041d95e38ab90d1c"},
{file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6addbd5b488aedb7f9bc19f91cd87ea476206f45d7116fcfe3d31416702a82fa"},
{file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc4ccdc64e3039fc303defd119658148f2349239871db72cd74e2eeaa9b80b71"},
{file = "matplotlib-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b7a2a253d3b36d90c8993b4620183b55665a429da8357a4f621e78cd48b2b30b"},
{file = "matplotlib-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:8080d5081a86e690d7688ffa542532e87f224c38a6ed71f8fbed34dd1d9fedae"},
{file = "matplotlib-3.8.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6485ac1f2e84676cff22e693eaa4fbed50ef5dc37173ce1f023daef4687df616"},
{file = "matplotlib-3.8.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c89ee9314ef48c72fe92ce55c4e95f2f39d70208f9f1d9db4e64079420d8d732"},
{file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50bac6e4d77e4262c4340d7a985c30912054745ec99756ce213bfbc3cb3808eb"},
{file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f51c4c869d4b60d769f7b4406eec39596648d9d70246428745a681c327a8ad30"},
{file = "matplotlib-3.8.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b12ba985837e4899b762b81f5b2845bd1a28f4fdd1a126d9ace64e9c4eb2fb25"},
{file = "matplotlib-3.8.4-cp312-cp312-win_amd64.whl", hash = "sha256:7a6769f58ce51791b4cb8b4d7642489df347697cd3e23d88266aaaee93b41d9a"},
{file = "matplotlib-3.8.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:843cbde2f0946dadd8c5c11c6d91847abd18ec76859dc319362a0964493f0ba6"},
{file = "matplotlib-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1c13f041a7178f9780fb61cc3a2b10423d5e125480e4be51beaf62b172413b67"},
{file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb44f53af0a62dc80bba4443d9b27f2fde6acfdac281d95bc872dc148a6509cc"},
{file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:606e3b90897554c989b1e38a258c626d46c873523de432b1462f295db13de6f9"},
{file = "matplotlib-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9bb0189011785ea794ee827b68777db3ca3f93f3e339ea4d920315a0e5a78d54"},
{file = "matplotlib-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:6209e5c9aaccc056e63b547a8152661324404dd92340a6e479b3a7f24b42a5d0"},
{file = "matplotlib-3.8.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7064120a59ce6f64103c9cefba8ffe6fba87f2c61d67c401186423c9a20fd35"},
{file = "matplotlib-3.8.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0e47eda4eb2614300fc7bb4657fced3e83d6334d03da2173b09e447418d499f"},
{file = "matplotlib-3.8.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:493e9f6aa5819156b58fce42b296ea31969f2aab71c5b680b4ea7a3cb5c07d94"},
{file = "matplotlib-3.8.4.tar.gz", hash = "sha256:8aac397d5e9ec158960e31c381c5ffc52ddd52bd9a47717e2a694038167dffea"},
]
[package.dependencies]
contourpy = ">=1.0.1"
cycler = ">=0.10"
fonttools = ">=4.22.0"
kiwisolver = ">=1.3.1"
numpy = ">=1.21"
packaging = ">=20.0"
pillow = ">=8"
pyparsing = ">=2.3.1"
python-dateutil = ">=2.7"
[[package]]
name = "matplotlib-inline"
version = "0.1.6"
@ -3257,6 +3611,7 @@ optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c"},
{file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux2014_aarch64.whl", hash = "sha256:211a63e7b30a9d62f1a853e19928fbb1a750e3f17a13a3d1f98ff0ced19478dd"},
{file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-win_amd64.whl", hash = "sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1"},
]
@ -3402,6 +3757,133 @@ files = [
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"},
]
[[package]]
name = "pandas"
version = "2.1.0"
description = "Powerful data structures for data analysis, time series, and statistics"
optional = false
python-versions = ">=3.9"
files = [
{file = "pandas-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:40dd20439ff94f1b2ed55b393ecee9cb6f3b08104c2c40b0cb7186a2f0046242"},
{file = "pandas-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d4f38e4fedeba580285eaac7ede4f686c6701a9e618d8a857b138a126d067f2f"},
{file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e6a0fe052cf27ceb29be9429428b4918f3740e37ff185658f40d8702f0b3e09"},
{file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d81e1813191070440d4c7a413cb673052b3b4a984ffd86b8dd468c45742d3cc"},
{file = "pandas-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eb20252720b1cc1b7d0b2879ffc7e0542dd568f24d7c4b2347cb035206936421"},
{file = "pandas-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:38f74ef7ebc0ffb43b3d633e23d74882bce7e27bfa09607f3c5d3e03ffd9a4a5"},
{file = "pandas-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cda72cc8c4761c8f1d97b169661f23a86b16fdb240bdc341173aee17e4d6cedd"},
{file = "pandas-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d97daeac0db8c993420b10da4f5f5b39b01fc9ca689a17844e07c0a35ac96b4b"},
{file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8c58b1113892e0c8078f006a167cc210a92bdae23322bb4614f2f0b7a4b510f"},
{file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:629124923bcf798965b054a540f9ccdfd60f71361255c81fa1ecd94a904b9dd3"},
{file = "pandas-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:70cf866af3ab346a10debba8ea78077cf3a8cd14bd5e4bed3d41555a3280041c"},
{file = "pandas-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d53c8c1001f6a192ff1de1efe03b31a423d0eee2e9e855e69d004308e046e694"},
{file = "pandas-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86f100b3876b8c6d1a2c66207288ead435dc71041ee4aea789e55ef0e06408cb"},
{file = "pandas-2.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28f330845ad21c11db51e02d8d69acc9035edfd1116926ff7245c7215db57957"},
{file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9a6ccf0963db88f9b12df6720e55f337447aea217f426a22d71f4213a3099a6"},
{file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d99e678180bc59b0c9443314297bddce4ad35727a1a2656dbe585fd78710b3b9"},
{file = "pandas-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b31da36d376d50a1a492efb18097b9101bdbd8b3fbb3f49006e02d4495d4c644"},
{file = "pandas-2.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0164b85937707ec7f70b34a6c3a578dbf0f50787f910f21ca3b26a7fd3363437"},
{file = "pandas-2.1.0.tar.gz", hash = "sha256:62c24c7fc59e42b775ce0679cfa7b14a5f9bfb7643cfbe708c960699e05fb918"},
]
[package.dependencies]
numpy = {version = ">=1.23.2", markers = "python_version >= \"3.11\""}
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
tzdata = ">=2022.1"
[package.extras]
all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"]
aws = ["s3fs (>=2022.05.0)"]
clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"]
compression = ["zstandard (>=0.17.0)"]
computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"]
consortium-standard = ["dataframe-api-compat (>=0.1.7)"]
excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"]
feather = ["pyarrow (>=7.0.0)"]
fss = ["fsspec (>=2022.05.0)"]
gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"]
hdf5 = ["tables (>=3.7.0)"]
html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"]
mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"]
output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"]
parquet = ["pyarrow (>=7.0.0)"]
performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"]
plot = ["matplotlib (>=3.6.1)"]
postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"]
spss = ["pyreadstat (>=1.1.5)"]
sql-other = ["SQLAlchemy (>=1.4.36)"]
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.8.0)"]
[[package]]
name = "pandas"
version = "2.2.2"
description = "Powerful data structures for data analysis, time series, and statistics"
optional = false
python-versions = ">=3.9"
files = [
{file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"},
{file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"},
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"},
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"},
{file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"},
{file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"},
{file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"},
{file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"},
{file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"},
{file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"},
{file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"},
{file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"},
{file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"},
{file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"},
{file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"},
{file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"},
{file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"},
{file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"},
{file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"},
{file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"},
{file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"},
{file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"},
{file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"},
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"},
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"},
{file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"},
{file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"},
{file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"},
{file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"},
]
[package.dependencies]
numpy = {version = ">=1.23.2", markers = "python_version == \"3.11\""}
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
tzdata = ">=2022.7"
[package.extras]
all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"]
aws = ["s3fs (>=2022.11.0)"]
clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"]
compression = ["zstandard (>=0.19.0)"]
computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"]
consortium-standard = ["dataframe-api-compat (>=0.1.7)"]
excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"]
feather = ["pyarrow (>=10.0.1)"]
fss = ["fsspec (>=2022.11.0)"]
gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"]
hdf5 = ["tables (>=3.8.0)"]
html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"]
mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"]
output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"]
parquet = ["pyarrow (>=10.0.1)"]
performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"]
plot = ["matplotlib (>=3.6.3)"]
postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"]
pyarrow = ["pyarrow (>=10.0.1)"]
spss = ["pyreadstat (>=1.2.0)"]
sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"]
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.9.2)"]
[[package]]
name = "pandocfilters"
version = "1.5.0"
@ -3460,6 +3942,24 @@ files = [
{file = "pathtools-0.1.2.tar.gz", hash = "sha256:7c35c5421a39bb82e58018febd90e3b6e5db34c5443aaaf742b3f33d4655f1c0"},
]
[[package]]
name = "patsy"
version = "0.5.6"
description = "A Python package for describing statistical models and for building design matrices."
optional = true
python-versions = "*"
files = [
{file = "patsy-0.5.6-py2.py3-none-any.whl", hash = "sha256:19056886fd8fa71863fa32f0eb090267f21fb74be00f19f5c70b2e9d76c883c6"},
{file = "patsy-0.5.6.tar.gz", hash = "sha256:95c6d47a7222535f84bff7f63d7303f2e297747a598db89cf5c67f0c0c7d2cdb"},
]
[package.dependencies]
numpy = ">=1.4"
six = "*"
[package.extras]
test = ["pytest", "pytest-cov", "scipy"]
[[package]]
name = "pettingzoo"
version = "1.24.2"
@ -3503,7 +4003,7 @@ ptyprocess = ">=0.5"
name = "pillow"
version = "10.2.0"
description = "Python Imaging Library (Fork)"
optional = true
optional = false
python-versions = ">=3.8"
files = [
{file = "pillow-10.2.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e"},
@ -3709,6 +4209,17 @@ files = [
[package.dependencies]
wcwidth = "*"
[[package]]
name = "property-cached"
version = "1.6.4"
description = "A decorator for caching properties in classes (forked from cached-property)."
optional = true
python-versions = ">= 3.5"
files = [
{file = "property-cached-1.6.4.zip", hash = "sha256:3e9c4ef1ed3653909147510481d7df62a3cfb483461a6986a6f1dcd09b2ebb73"},
{file = "property_cached-1.6.4-py2.py3-none-any.whl", hash = "sha256:135fc059ec969c1646424a0db15e7fbe1b5f8c36c0006d0b3c91ba568c11e7d8"},
]
[[package]]
name = "protobuf"
version = "3.20.3"
@ -4094,6 +4605,20 @@ files = [
{file = "PyOpenGL-3.1.7.tar.gz", hash = "sha256:eef31a3888e6984fd4d8e6c9961b184c9813ca82604d37fe3da80eb000a76c86"},
]
[[package]]
name = "pyparsing"
version = "3.1.2"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = false
python-versions = ">=3.6.8"
files = [
{file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
{file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
]
[package.extras]
diagrams = ["jinja2", "railroad-diagrams"]
[[package]]
name = "pytest"
version = "7.4.3"
@ -4157,6 +4682,17 @@ files = [
{file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"},
]
[[package]]
name = "pytz"
version = "2024.1"
description = "World timezone definitions, modern and historical"
optional = false
python-versions = "*"
files = [
{file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"},
{file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"},
]
[[package]]
name = "pywin32"
version = "306"
@ -4537,6 +5073,28 @@ files = [
{file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"},
]
[[package]]
name = "rliable"
version = "1.0.8"
description = "rliable: Reliable evaluation on reinforcement learning and machine learning benchmarks."
optional = true
python-versions = "*"
files = []
develop = false
[package.dependencies]
absl-py = ">=0.9.0"
arch = "5.3.1"
numpy = ">=1.16.4"
scipy = ">=1.7.0"
seaborn = ">=0.11.2"
[package.source]
type = "git"
url = "https://github.com/aai-institute/rliable.git"
reference = "HEAD"
resolved_reference = "c756ac408d15507481166edb252f5b61cf5628ff"
[[package]]
name = "rpds-py"
version = "0.13.0"
@ -4804,6 +5362,27 @@ dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyl
doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"]
test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "seaborn"
version = "0.13.2"
description = "Statistical data visualization"
optional = true
python-versions = ">=3.8"
files = [
{file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"},
{file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"},
]
[package.dependencies]
matplotlib = ">=3.4,<3.6.1 || >3.6.1"
numpy = ">=1.20,<1.24.0 || >1.24.0"
pandas = ">=1.2"
[package.extras]
dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"]
docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"]
stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"]
[[package]]
name = "send2trash"
version = "1.8.2"
@ -5631,6 +6210,101 @@ pure-eval = "*"
[package.extras]
tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"]
[[package]]
name = "statsmodels"
version = "0.14.0"
description = "Statistical computations and models for Python"
optional = true
python-versions = ">=3.8"
files = [
{file = "statsmodels-0.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:16bfe0c96a53b20fa19067e3b6bd2f1d39e30d4891ea0d7bc20734a0ae95942d"},
{file = "statsmodels-0.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5a6a0a1a06ff79be8aa89c8494b33903442859add133f0dda1daf37c3c71682e"},
{file = "statsmodels-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77b3cd3a5268ef966a0a08582c591bd29c09c88b4566c892a7c087935234f285"},
{file = "statsmodels-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c64ebe9cf376cba0c31aed138e15ed179a1d128612dd241cdf299d159e5e882"},
{file = "statsmodels-0.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:229b2f676b4a45cb62d132a105c9c06ca8a09ffba060abe34935391eb5d9ba87"},
{file = "statsmodels-0.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:fb471f757fc45102a87e5d86e87dc2c8c78b34ad4f203679a46520f1d863b9da"},
{file = "statsmodels-0.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:582f9e41092e342aaa04920d17cc3f97240e3ee198672f194719b5a3d08657d6"},
{file = "statsmodels-0.14.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7ebe885ccaa64b4bc5ad49ac781c246e7a594b491f08ab4cfd5aa456c363a6f6"},
{file = "statsmodels-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b587ee5d23369a0e881da6e37f78371dce4238cf7638a455db4b633a1a1c62d6"},
{file = "statsmodels-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ef7fa4813c7a73b0d8a0c830250f021c102c71c95e9fe0d6877bcfb56d38b8c"},
{file = "statsmodels-0.14.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afe80544ef46730ea1b11cc655da27038bbaa7159dc5af4bc35bbc32982262f2"},
{file = "statsmodels-0.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:a6ad7b8aadccd4e4dd7f315a07bef1bca41d194eeaf4ec600d20dea02d242fce"},
{file = "statsmodels-0.14.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0eea4a0b761aebf0c355b726ac5616b9a8b618bd6e81a96b9f998a61f4fd7484"},
{file = "statsmodels-0.14.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4c815ce7a699047727c65a7c179bff4031cff9ae90c78ca730cfd5200eb025dd"},
{file = "statsmodels-0.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:575f61337c8e406ae5fa074d34bc6eb77b5a57c544b2d4ee9bc3da6a0a084cf1"},
{file = "statsmodels-0.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8be53cdeb82f49c4cb0fda6d7eeeb2d67dbd50179b3e1033510e061863720d93"},
{file = "statsmodels-0.14.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6f7d762df4e04d1dde8127d07e91aff230eae643aa7078543e60e83e7d5b40db"},
{file = "statsmodels-0.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:fc2c7931008a911e3060c77ea8933f63f7367c0f3af04f82db3a04808ad2cd2c"},
{file = "statsmodels-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3757542c95247e4ab025291a740efa5da91dc11a05990c033d40fce31c450dc9"},
{file = "statsmodels-0.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:de489e3ed315bdba55c9d1554a2e89faa65d212e365ab81bc323fa52681fc60e"},
{file = "statsmodels-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76e290f4718177bffa8823a780f3b882d56dd64ad1c18cfb4bc8b5558f3f5757"},
{file = "statsmodels-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71054f9dbcead56def14e3c9db6f66f943110fdfb19713caf0eb0f08c1ec03fd"},
{file = "statsmodels-0.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:d7fda067837df94e0a614d93d3a38fb6868958d37f7f50afe2a534524f2660cb"},
{file = "statsmodels-0.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1c7724ad573af26139a98393ae64bc318d1b19762b13442d96c7a3e793f495c3"},
{file = "statsmodels-0.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3b0a135f3bfdeec987e36e3b3b4c53e0bb87a8d91464d2fcc4d169d176f46fdb"},
{file = "statsmodels-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce28eb1c397dba437ec39b9ab18f2101806f388c7a0cf9cdfd8f09294ad1c799"},
{file = "statsmodels-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68b1c768dd94cc5ba8398121a632b673c625491aa7ed627b82cb4c880a25563f"},
{file = "statsmodels-0.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:8d1e3e10dfbfcd58119ba5a4d3c7d519182b970a2aebaf0b6f539f55ae16058d"},
{file = "statsmodels-0.14.0.tar.gz", hash = "sha256:6875c7d689e966d948f15eb816ab5616f4928706b180cf470fd5907ab6f647a4"},
]
[package.dependencies]
numpy = ">=1.18"
packaging = ">=21.3"
pandas = ">=1.0"
patsy = ">=0.5.2"
scipy = ">=1.4,<1.9.2 || >1.9.2"
[package.extras]
build = ["cython (>=0.29.26)"]
develop = ["colorama", "cython (>=0.29.26)", "cython (>=0.29.28,<3.0.0)", "flake8", "isort", "joblib", "matplotlib (>=3)", "oldest-supported-numpy (>=2022.4.18)", "pytest (>=7.0.1,<7.1.0)", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools-scm[toml] (>=7.0.0,<7.1.0)"]
docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"]
[[package]]
name = "statsmodels"
version = "0.14.2"
description = "Statistical computations and models for Python"
optional = true
python-versions = ">=3.9"
files = [
{file = "statsmodels-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df5d6f95c46f0341da6c79ee7617e025bf2b371e190a8e60af1ae9cabbdb7a97"},
{file = "statsmodels-0.14.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a87ef21fadb445b650f327340dde703f13aec1540f3d497afb66324499dea97a"},
{file = "statsmodels-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5827a12e3ede2b98a784476d61d6bec43011fedb64aa815f2098e0573bece257"},
{file = "statsmodels-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f2b7611a61adb7d596a6d239abdf1a4d5492b931b00d5ed23d32844d40e48e"},
{file = "statsmodels-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c254c66142f1167b4c7d031cf8db55294cc62ff3280e090fc45bd10a7f5fd029"},
{file = "statsmodels-0.14.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e46e9d59293c1af4cc1f4e5248f17e7e7bc596bfce44d327c789ac27f09111b"},
{file = "statsmodels-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:50fcb633987779e795142f51ba49fb27648d46e8a1382b32ebe8e503aaabaa9e"},
{file = "statsmodels-0.14.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:876794068abfaeed41df71b7887000031ecf44fbfa6b50d53ccb12ebb4ab747a"},
{file = "statsmodels-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a91f6c4943de13e3ce2e20ee3b5d26d02bd42300616a421becd53756f5deb37"},
{file = "statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4864a1c4615c5ea5f2e3b078a75bdedc90dd9da210a37e0738e064b419eccee2"},
{file = "statsmodels-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afbd92410e0df06f3d8c4e7c0e2e71f63f4969531f280fb66059e2ecdb6e0415"},
{file = "statsmodels-0.14.2-cp311-cp311-win_amd64.whl", hash = "sha256:8e004cfad0e46ce73fe3f3812010c746f0d4cfd48e307b45c14e9e360f3d2510"},
{file = "statsmodels-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb0ba1ad3627705f5ae20af6b2982f500546d43892543b36c7bca3e2f87105e7"},
{file = "statsmodels-0.14.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:90fd2f0110b73fc3fa5a2f21c3ca99b0e22285cccf38e56b5b8fd8ce28791b0f"},
{file = "statsmodels-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac780ad9ff552773798829a0b9c46820b0faa10e6454891f5e49a845123758ab"},
{file = "statsmodels-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55d1742778400ae67acb04b50a2c7f5804182f8a874bd09ca397d69ed159a751"},
{file = "statsmodels-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f870d14a587ea58a3b596aa994c2ed889cc051f9e450e887d2c83656fc6a64bf"},
{file = "statsmodels-0.14.2-cp312-cp312-win_amd64.whl", hash = "sha256:f450fcbae214aae66bd9d2b9af48e0f8ba1cb0e8596c6ebb34e6e3f0fec6542c"},
{file = "statsmodels-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:201c3d00929c4a67cda1fe05b098c8dcf1b1eeefa88e80a8f963a844801ed59f"},
{file = "statsmodels-0.14.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9edefa4ce08e40bc1d67d2f79bc686ee5e238e801312b5a029ee7786448c389a"},
{file = "statsmodels-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29c78a7601fdae1aa32104c5ebff2e0b72c26f33e870e2f94ab1bcfd927ece9b"},
{file = "statsmodels-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f36494df7c03d63168fccee5038a62f469469ed6a4dd6eaeb9338abedcd0d5f5"},
{file = "statsmodels-0.14.2-cp39-cp39-win_amd64.whl", hash = "sha256:8875823bdd41806dc853333cc4e1b7ef9481bad2380a999e66ea42382cf2178d"},
{file = "statsmodels-0.14.2.tar.gz", hash = "sha256:890550147ad3a81cda24f0ba1a5c4021adc1601080bd00e191ae7cd6feecd6ad"},
]
[package.dependencies]
numpy = ">=1.22.3"
packaging = ">=21.3"
pandas = ">=1.4,<2.1.0 || >2.1.0"
patsy = ">=0.5.6"
scipy = ">=1.8,<1.9.2 || >1.9.2"
[package.extras]
build = ["cython (>=0.29.33)"]
develop = ["colorama", "cython (>=0.29.33)", "cython (>=3.0.10,<4)", "flake8", "isort", "joblib", "matplotlib (>=3)", "pytest (>=7.3.0,<8)", "pytest-cov", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools-scm[toml] (>=8.0,<9.0)"]
docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"]
[[package]]
name = "swig"
version = "4.2.0"
@ -5972,6 +6646,17 @@ files = [
{file = "typing_extensions-4.8.0.tar.gz", hash = "sha256:df8e4339e9cb77357558cbdbceca33c303714cf861d1eef15e1070055ae8b7ef"},
]
[[package]]
name = "tzdata"
version = "2024.1"
description = "Provider of IANA time zone data"
optional = false
python-versions = ">=2"
files = [
{file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"},
{file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"},
]
[[package]]
name = "uc-micro-py"
version = "1.0.2"
@ -6245,6 +6930,7 @@ atari = ["ale-py", "autorom", "opencv_python", "shimmy"]
box2d = ["box2d_py", "pygame", "swig"]
classic-control = ["pygame"]
envpool = ["envpool"]
eval = ["docstring-parser", "joblib", "jsonargparse", "rliable", "scipy"]
mujoco = ["imageio", "mujoco"]
mujoco-py = ["cython", "mujoco-py"]
pybullet = ["pybullet"]
@ -6254,4 +6940,4 @@ vizdoom = ["vizdoom"]
[metadata]
lock-version = "2.0"
python-versions = "^3.11"
content-hash = "a7aa80de549e7af1147d14f9bdd48659b7018732af34022cc734565af1f742e9"
content-hash = "719c5e7c9a09f731789aa753aeb7c37443c48a65e9bb058344c4763e17b7fa58"

View File

@ -28,10 +28,12 @@ python = "^3.11"
deepdiff = "^7.0.1"
gymnasium = "^0.28.0"
h5py = "^3.9.0"
matplotlib = ">=3.0.0"
numba = "^0.57.1"
numpy = "^1"
overrides = "^7.4.0"
packaging = "*"
pandas = ">=2.0.0"
pettingzoo = "^1.22"
tensorboard = "^2.5.0"
# Torch 2.0.1 causes problems, see https://github.com/pytorch/pytorch/issues/100974
@ -57,6 +59,7 @@ docstring-parser = { version = "^0.15", optional = true }
envpool = { version = "^0.8.2", optional = true, markers = "sys_platform != 'darwin'"}
gymnasium-robotics = { version = "*", optional = true }
imageio = { version = ">=2.14.1", optional = true }
joblib = { version = "*", optional = true }
jsonargparse = {version = "^4.24.1", optional = true}
# we need <3 b/c of https://github.com/Farama-Foundation/Gymnasium/issues/749
mujoco = { version = ">=2.1.5, <3", optional = true }
@ -64,6 +67,8 @@ mujoco-py = { version = ">=2.1,<2.2", optional = true }
opencv_python = { version = "*", optional = true }
pybullet = { version = "*", optional = true }
pygame = { version = ">=2.1.3", optional = true }
rliable = {optional = true, git = "https://github.com/aai-institute/rliable.git"}
scipy = { version = "*", optional = true }
shimmy = { version = ">=0.1.0,<1.0", optional = true }
swig = { version = "4.*", optional = true }
vizdoom = { version = "*", optional = true }
@ -78,6 +83,7 @@ pybullet = ["pybullet"]
envpool = ["envpool"]
robotics = ["gymnasium-robotics"]
vizdoom = ["vizdoom"]
eval = ["rliable", "joblib", "scipy", "jsonargparse", "docstring-parser"]
[tool.poetry.group.dev]

View File

@ -2,11 +2,12 @@ from typing import Literal
import numpy as np
import pytest
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import BaseLogger
from tianshou.utils import TensorboardLogger
class TestBaseLogger:
class TestTensorBoardLogger:
@staticmethod
@pytest.mark.parametrize(
"input_dict, expected_output",
@ -20,7 +21,8 @@ class TestBaseLogger:
| dict[str, dict[str, dict[str, int]]],
expected_output: dict[str, int],
) -> None:
result = BaseLogger.prepare_dict_for_logging(input_dict)
logger = TensorboardLogger(SummaryWriter("log/logger"))
result = logger.prepare_dict_for_logging(input_dict)
assert result == expected_output
@staticmethod
@ -36,7 +38,8 @@ class TestBaseLogger:
delimiter: Literal["|", "."],
expected_output: dict[str, int],
) -> None:
result = BaseLogger.prepare_dict_for_logging(input_dict, delimiter=delimiter)
logger = TensorboardLogger(SummaryWriter("log/logger"))
result = logger.prepare_dict_for_logging(input_dict, delimiter=delimiter)
assert result == expected_output
@staticmethod
@ -56,7 +59,8 @@ class TestBaseLogger:
exclude_arrays: bool,
expected_output: dict[str, np.ndarray],
) -> None:
result = BaseLogger.prepare_dict_for_logging(input_dict, exclude_arrays=exclude_arrays)
logger = TensorboardLogger(SummaryWriter("log/logger"))
result = logger.prepare_dict_for_logging(input_dict, exclude_arrays=exclude_arrays)
assert result.keys() == expected_output.keys()
for val1, val2 in zip(result.values(), expected_output.values(), strict=True):
assert np.all(val1 == val2)
@ -72,5 +76,6 @@ class TestBaseLogger:
input_dict: dict[str, tuple[Literal[1]] | dict[str, str | dict[str, int]]],
expected_output: dict[str, int],
) -> None:
result = BaseLogger.prepare_dict_for_logging(input_dict)
logger = TensorboardLogger(SummaryWriter("log/logger"))
result = logger.prepare_dict_for_logging(input_dict)
assert result == expected_output

View File

@ -6,9 +6,19 @@ from tianshou.highlevel.env import (
class DiscreteTestEnvFactory(EnvFactoryRegistered):
def __init__(self) -> None:
super().__init__(task="CartPole-v0", seed=42, venv_type=VectorEnvType.DUMMY)
super().__init__(
task="CartPole-v0",
train_seed=42,
test_seed=1337,
venv_type=VectorEnvType.DUMMY,
)
class ContinuousTestEnvFactory(EnvFactoryRegistered):
def __init__(self) -> None:
super().__init__(task="Pendulum-v1", seed=42, venv_type=VectorEnvType.DUMMY)
super().__init__(
task="Pendulum-v1",
train_seed=42,
test_seed=1337,
venv_type=VectorEnvType.DUMMY,
)

View File

@ -49,7 +49,7 @@ def test_experiment_builder_continuous_default_params(builder_cls: type[Experime
sampling_config=sampling_config,
)
experiment = builder.build()
experiment.run("test")
experiment.run(override_experiment_name="test")
print(experiment)
@ -77,5 +77,32 @@ def test_experiment_builder_discrete_default_params(builder_cls: type[Experiment
sampling_config=sampling_config,
)
experiment = builder.build()
experiment.run("test")
experiment.run(override_experiment_name="test")
print(experiment)
def test_temp_builder_modification() -> None:
env_factory = DiscreteTestEnvFactory()
sampling_config = SamplingConfig(
num_epochs=1,
step_per_epoch=100,
num_train_envs=2,
num_test_envs=2,
)
builder = PPOExperimentBuilder(
experiment_config=ExperimentConfig(persistence_enabled=False),
env_factory=env_factory,
sampling_config=sampling_config,
)
original_seed = builder.experiment_config.seed
original_train_seed = builder.sampling_config.train_seed
with builder.temp_config_mutation():
builder.experiment_config.seed += 12345
builder.sampling_config.train_seed += 456
exp = builder.build()
assert builder.experiment_config.seed == original_seed
assert builder.sampling_config.train_seed == original_train_seed
assert exp.config.seed == original_seed + 12345
assert exp.sampling_config.train_seed == original_train_seed + 456

View File

@ -6,6 +6,12 @@ import torch
from tianshou.data import Batch
from tianshou.data.batch import BatchProtocol, arr_type
TNestedDictValue = np.ndarray | dict[str, "TNestedDictValue"]
d: dict[str, TNestedDictValue] = {"a": {"b": np.array([1, 2, 3])}}
d["c"] = np.array([1, 2, 3])
class ObsBatchProtocol(BatchProtocol, Protocol):
"""Observations of an environment that a policy can turn into actions.

View File

View File

@ -0,0 +1,75 @@
"""Provides a basic interface for launching experiments. The API is experimental and subject to change!."""
import logging
from abc import ABC, abstractmethod
from collections.abc import Sequence
from copy import copy
from dataclasses import asdict, dataclass
from enum import Enum
from typing import Literal
from joblib import Parallel, delayed
from tianshou.highlevel.experiment import Experiment
log = logging.getLogger(__name__)
@dataclass
class JoblibConfig:
n_jobs: int = -1
"""The maximum number of concurrently running jobs. If -1, all CPUs are used."""
backend: Literal["loky", "multiprocessing", "threading"] | None = "loky"
"""Allows to hard-code backend, otherwise inferred based on prefer and require."""
verbose: int = 10
"""If greater than zero, prints progress messages."""
class ExpLauncher(ABC):
@abstractmethod
def launch(self, experiments: Sequence[Experiment]) -> None:
pass
class SequentialExpLauncher(ExpLauncher):
def launch(self, experiments: Sequence[Experiment]) -> None:
for exp in experiments:
exp.run()
class JoblibExpLauncher(ExpLauncher):
def __init__(self, joblib_cfg: JoblibConfig | None = None) -> None:
self.joblib_cfg = copy(joblib_cfg) if joblib_cfg is not None else JoblibConfig()
# Joblib's backend is hard-coded to loky since the threading backend produces different results
if self.joblib_cfg.backend != "loky":
log.warning(
f"Ignoring the user provided joblib backend {self.joblib_cfg.backend} and using loky instead. "
f"The current implementation requires loky to work and will be relaxed soon",
)
self.joblib_cfg.backend = "loky"
def launch(self, experiments: Sequence[Experiment]) -> None:
Parallel(**asdict(self.joblib_cfg))(delayed(self._safe_execute)(exp) for exp in experiments)
@staticmethod
def _safe_execute(exp: Experiment) -> None:
try:
exp.run()
except BaseException as e:
log.error(e)
class RegisteredExpLauncher(Enum):
joblib = "joblib"
sequential = "sequential"
def create_launcher(self) -> ExpLauncher:
match self:
case RegisteredExpLauncher.joblib:
return JoblibExpLauncher()
case RegisteredExpLauncher.sequential:
return SequentialExpLauncher()
case _:
raise NotImplementedError(
f"Launcher {self} is not yet implemented.",
)

View File

@ -0,0 +1,218 @@
"""The rliable-evaluation module provides a high-level interface to evaluate the results of an experiment with multiple runs
on different seeds using the rliable library. The API is experimental and subject to change!.
"""
import os
from dataclasses import asdict, dataclass, fields
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sst
from rliable import library as rly
from rliable import plot_utils
from tianshou.highlevel.experiment import Experiment
from tianshou.utils import logging
from tianshou.utils.logger.base import DataScope
log = logging.getLogger(__name__)
@dataclass
class LoggedSummaryData:
mean: np.ndarray
std: np.ndarray
max: np.ndarray
min: np.ndarray
@dataclass
class LoggedCollectStats:
env_step: np.ndarray | None = None
n_collected_episodes: np.ndarray | None = None
n_collected_steps: np.ndarray | None = None
collect_time: np.ndarray | None = None
collect_speed: np.ndarray | None = None
returns_stat: LoggedSummaryData | None = None
lens_stat: LoggedSummaryData | None = None
@classmethod
def from_data_dict(cls, data: dict) -> "LoggedCollectStats":
"""Create a LoggedCollectStats object from a dictionary.
Converts SequenceSummaryStats from dict format to dataclass format and ignores fields that are not present.
"""
field_names = [f.name for f in fields(cls)]
for k, v in data.items():
if k not in field_names:
data.pop(k)
if isinstance(v, dict):
data[k] = LoggedSummaryData(**v)
return cls(**data)
@dataclass
class RLiableExperimentResult:
"""The result of an experiment that can be used with the rliable library."""
exp_dir: str
"""The base directory where each sub-directory contains the results of one experiment run."""
test_episode_returns_RE: np.ndarray
"""The test episodes for each run of the experiment where each row corresponds to one run."""
env_steps_E: np.ndarray
"""The number of environment steps at which the test episodes were evaluated."""
@classmethod
def load_from_disk(cls, exp_dir: str) -> "RLiableExperimentResult":
"""Load the experiment result from disk.
:param exp_dir: The directory from where the experiment results are restored.
"""
test_episode_returns = []
env_step_at_test = None
# TODO: env_step_at_test should not be defined in a loop and overwritten at each iteration
# just for retrieving them. We might need a cleaner directory structure.
for entry in os.scandir(exp_dir):
if entry.name.startswith(".") or not entry.is_dir():
continue
exp = Experiment.from_directory(entry.path)
logger = exp.logger_factory.create_logger(
entry.path,
entry.name,
None,
asdict(exp.config),
)
data = logger.restore_logged_data(entry.path)
if DataScope.TEST.value not in data or not data[DataScope.TEST.value]:
continue
restored_test_data = data[DataScope.TEST.value]
if not isinstance(restored_test_data, dict):
raise RuntimeError(
f"Expected entry with key {DataScope.TEST.value} data to be a dictionary, "
f"but got {restored_test_data=}.",
)
test_data = LoggedCollectStats.from_data_dict(restored_test_data)
if test_data.returns_stat is None:
continue
test_episode_returns.append(test_data.returns_stat.mean)
env_step_at_test = test_data.env_step
if not test_episode_returns or env_step_at_test is None:
raise ValueError(f"No experiment data found in {exp_dir}.")
return cls(
test_episode_returns_RE=np.array(test_episode_returns),
env_steps_E=np.array(env_step_at_test),
exp_dir=exp_dir,
)
def _get_rliable_data(
self,
algo_name: str | None = None,
score_thresholds: np.ndarray | None = None,
) -> tuple[dict, np.ndarray, np.ndarray]:
"""Return the data in the format expected by the rliable library.
:param algo_name: The name of the algorithm to be shown in the figure legend. If None, the name of the algorithm
is set to the experiment dir.
:param score_thresholds: The score thresholds for the performance profile. If None, the thresholds are inferred
from the minimum and maximum test episode returns.
:return: A tuple score_dict, env_steps, and score_thresholds.
"""
if score_thresholds is None:
score_thresholds = np.linspace(
np.min(self.test_episode_returns_RE),
np.max(self.test_episode_returns_RE),
101,
)
if algo_name is None:
algo_name = os.path.basename(self.exp_dir)
score_dict = {algo_name: self.test_episode_returns_RE}
return score_dict, self.env_steps_E, score_thresholds
def eval_results(
self,
algo_name: str | None = None,
score_thresholds: np.ndarray | None = None,
save_plots: bool = False,
show_plots: bool = True,
) -> tuple[plt.Figure, plt.Axes, plt.Figure, plt.Axes]:
"""Evaluate the results of an experiment and create a sample efficiency curve and a performance profile.
:param algo_name: The name of the algorithm to be shown in the figure legend. If None, the name of the algorithm
is set to the experiment dir.
:param score_thresholds: The score thresholds for the performance profile. If None, the thresholds are inferred
from the minimum and maximum test episode returns.
:param save_plots: If True, the figures are saved to the experiment directory.
:param show_plots: If True, the figures are shown.
:return: The created figures and axes.
"""
score_dict, env_steps, score_thresholds = self._get_rliable_data(
algo_name,
score_thresholds,
)
iqm = lambda scores: sst.trim_mean(scores, proportiontocut=0.25, axis=0)
iqm_scores, iqm_cis = rly.get_interval_estimates(score_dict, iqm)
# Plot IQM sample efficiency curve
fig_iqm, ax_iqm = plt.subplots(ncols=1, figsize=(7, 5), constrained_layout=True)
plot_utils.plot_sample_efficiency_curve(
env_steps,
iqm_scores,
iqm_cis,
algorithms=None,
xlabel="env step",
ylabel="IQM episode return",
ax=ax_iqm,
)
if show_plots:
plt.show(block=False)
if save_plots:
iqm_sample_efficiency_curve_path = os.path.abspath(
os.path.join(
self.exp_dir,
"iqm_sample_efficiency_curve.png",
),
)
log.info(f"Saving iqm sample efficiency curve to {iqm_sample_efficiency_curve_path}.")
fig_iqm.savefig(iqm_sample_efficiency_curve_path)
final_score_dict = {algo: returns[:, [-1]] for algo, returns in score_dict.items()}
score_distributions, score_distributions_cis = rly.create_performance_profile(
final_score_dict,
score_thresholds,
)
# Plot score distributions
fig_profile, ax_profile = plt.subplots(ncols=1, figsize=(7, 5), constrained_layout=True)
plot_utils.plot_performance_profiles(
score_distributions,
score_thresholds,
performance_profile_cis=score_distributions_cis,
xlabel=r"Episode return $(\tau)$",
ax=ax_profile,
)
if save_plots:
profile_curve_path = os.path.abspath(
os.path.join(self.exp_dir, "performance_profile.png"),
)
log.info(f"Saving performance profile curve to {profile_curve_path}.")
fig_profile.savefig(profile_curve_path)
if show_plots:
plt.show(block=False)
return fig_iqm, ax_iqm, fig_profile, ax_profile

View File

@ -53,6 +53,9 @@ class SamplingConfig(ToStringMixin):
num_train_envs: int = -1
"""the number of training environments to use. If set to -1, use number of CPUs/threads."""
train_seed: int = 42
"""the seed to use for the training environments."""
num_test_envs: int = 1
"""the number of test environments to use"""
@ -127,6 +130,10 @@ class SamplingConfig(ToStringMixin):
temporal aspects (e.g. velocities of moving objects for which only positions are observed).
"""
@property
def test_seed(self) -> int:
return self.train_seed + self.num_train_envs
def __post_init__(self) -> None:
if self.num_train_envs == -1:
self.num_train_envs = multiprocessing.cpu_count()

View File

@ -412,7 +412,8 @@ class EnvFactoryRegistered(EnvFactory):
self,
*,
task: str,
seed: int,
train_seed: int,
test_seed: int,
venv_type: VectorEnvType,
envpool_factory: EnvPoolFactory | None = None,
render_mode_train: str | None = None,
@ -434,7 +435,8 @@ class EnvFactoryRegistered(EnvFactory):
super().__init__(venv_type)
self.task = task
self.envpool_factory = envpool_factory
self.seed = seed
self.train_seed = train_seed
self.test_seed = test_seed
self.render_modes = {
EnvMode.TRAIN: render_mode_train,
EnvMode.TEST: render_mode_test,
@ -462,15 +464,16 @@ class EnvFactoryRegistered(EnvFactory):
return gymnasium.make(self.task, **kwargs)
def create_venv(self, num_envs: int, mode: EnvMode) -> BaseVectorEnv:
seed = self.train_seed if mode == EnvMode.TRAIN else self.test_seed
if self.envpool_factory is not None:
return self.envpool_factory.create_venv(
self.task,
num_envs,
mode,
self.seed,
seed,
self._create_kwargs(mode),
)
else:
venv = super().create_venv(num_envs, mode)
venv.seed(self.seed)
venv.seed(seed)
return venv

View File

@ -1,10 +1,12 @@
import os
import pickle
from abc import abstractmethod
from collections.abc import Sequence
from collections.abc import Iterator, Sequence
from contextlib import contextmanager
from copy import copy
from dataclasses import dataclass
from pprint import pformat
from typing import Self
from typing import Literal, Self
import numpy as np
import torch
@ -144,6 +146,7 @@ class Experiment(ToStringMixin):
agent_factory: AgentFactory,
sampling_config: SamplingConfig,
logger_factory: LoggerFactory | None = None,
name: str | Literal["DATETIME_TAG"] = "DATETIME_TAG",
):
if logger_factory is None:
logger_factory = LoggerFactoryDefault()
@ -152,6 +155,22 @@ class Experiment(ToStringMixin):
self.env_factory = env_factory
self.agent_factory = agent_factory
self.logger_factory = logger_factory
if name == "DATETIME_TAG":
name = datetime_tag()
self.name = name
def get_seeding_info_as_str(self) -> str:
"""Useful for creating unique experiment names based on seeds.
A typical example is to do `experiment.name = f"{experiment.name}_{experiment.get_seeding_info_as_str()}"`.
"""
return "_".join(
[
f"exp_seed={self.config.seed}",
f"train_seed={self.sampling_config.train_seed}",
f"test_seed={self.sampling_config.test_seed}",
],
)
@classmethod
def from_directory(cls, directory: str, restore_policy: bool = True) -> "Experiment":
@ -186,35 +205,42 @@ class Experiment(ToStringMixin):
def run(
self,
experiment_name: str | None = None,
override_experiment_name: str | Literal["DATETIME_TAG"] | None = None,
logger_run_id: str | None = None,
raise_error_on_dirname_collision: bool = True,
) -> ExperimentResult:
"""Run the experiment and return the results.
:param experiment_name: the experiment name, which corresponds to the directory (within the logging
:param override_experiment_name: if not None, will adjust the current instance's `name` name attribute.
The name corresponds to the directory (within the logging
directory) where all results associated with the experiment will be saved.
The name may contain path separators (i.e. `os.path.sep`, as used by `os.path.join`), in which case
a nested directory structure will be created.
If None, use a name containing the current date and time.
If "DATETIME_TAG" is passed, use a name containing the current date and time. This option
is useful for preventing file-name collisions if a single experiment is executed repeatedly.
:param logger_run_id: Run identifier to use for logger initialization/resumption (applies when
using wandb, in particular).
:param raise_error_on_dirname_collision: set to `False` e.g., when continuing a previously executed
experiment with the same name.
:return:
"""
if experiment_name is None:
experiment_name = datetime_tag()
if override_experiment_name is not None:
if override_experiment_name == "DATETIME_TAG":
override_experiment_name = datetime_tag()
self.name = override_experiment_name
# initialize persistence directory
use_persistence = self.config.persistence_enabled
persistence_dir = os.path.join(self.config.persistence_base_dir, experiment_name)
persistence_dir = os.path.join(self.config.persistence_base_dir, self.name)
if use_persistence:
os.makedirs(persistence_dir, exist_ok=True)
os.makedirs(persistence_dir, exist_ok=not raise_error_on_dirname_collision)
with logging.FileLoggerContext(
os.path.join(persistence_dir, self.LOG_FILENAME),
enabled=use_persistence and self.config.log_file_enabled,
):
# log initial information
log.info(f"Running experiment (name='{experiment_name}'):\n{self.pprints()}")
log.info(f"Running experiment (name='{self.name}'):\n{self.pprints()}")
log.info(f"Working directory: {os.getcwd()}")
self._set_seed()
@ -245,7 +271,7 @@ class Experiment(ToStringMixin):
if use_persistence:
logger = self.logger_factory.create_logger(
log_dir=persistence_dir,
experiment_name=experiment_name,
experiment_name=self.name,
run_id=logger_run_id,
config_dict=full_config,
)
@ -338,6 +364,32 @@ class ExperimentBuilder:
self._optim_factory: OptimizerFactory | None = None
self._policy_wrapper_factory: PolicyWrapperFactory | None = None
self._trainer_callbacks: TrainerCallbacks = TrainerCallbacks()
self._experiment_name: str = ""
@contextmanager
def temp_config_mutation(self) -> Iterator[Self]:
"""Returns the builder instance where the configs can be modified without affecting the current instance."""
original_sampling_config = copy(self.sampling_config)
original_experiment_config = copy(self.experiment_config)
yield self
self.sampling_config = original_sampling_config
self.experiment_config = original_experiment_config
@property
def experiment_config(self) -> ExperimentConfig:
return self._config
@experiment_config.setter
def experiment_config(self, experiment_config: ExperimentConfig) -> None:
self._config = experiment_config
@property
def sampling_config(self) -> SamplingConfig:
return self._sampling_config
@sampling_config.setter
def sampling_config(self, sampling_config: SamplingConfig) -> None:
self._sampling_config = sampling_config
def with_logger_factory(self, logger_factory: LoggerFactory) -> Self:
"""Allows to customize the logger factory to use.
@ -415,6 +467,20 @@ class ExperimentBuilder:
self._trainer_callbacks.epoch_stop_callback = callback
return self
def with_experiment_name(
self,
experiment_name: str | Literal["DATETIME_TAG"] = "DATETIME_TAG",
) -> Self:
"""Sets the name of the experiment.
:param experiment_name: the name. If "DATETIME_TAG" (default) is given, the current date and time will be used.
:return: the builder
"""
if experiment_name == "DATETIME_TAG":
experiment_name = datetime_tag()
self._experiment_name = experiment_name
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
pass
@ -425,9 +491,12 @@ class ExperimentBuilder:
else:
return self._optim_factory
def build(self) -> Experiment:
def build(self, add_seeding_info_to_name: bool = False) -> Experiment:
"""Creates the experiment based on the options specified via this builder.
:param add_seeding_info_to_name: whether to add a postfix to the experiment name that contains
info about the training seeds. Useful for creating multiple experiments that only differ
by seeds.
:return: the experiment
"""
agent_factory = self._create_agent_factory()
@ -440,9 +509,30 @@ class ExperimentBuilder:
agent_factory,
self._sampling_config,
self._logger_factory,
name=self._experiment_name,
)
if add_seeding_info_to_name:
if not experiment.name:
experiment.name = experiment.get_seeding_info_as_str()
else:
experiment.name = f"{experiment.name}_{experiment.get_seeding_info_as_str()}"
return experiment
def build_default_seeded_experiments(self, num_experiments: int) -> list[Experiment]:
"""Creates a list of experiments with non-overlapping seeds, starting from the configured seed.
Each experiment will have a unique name that is created from the original experiment name and the seeds used.
"""
num_train_envs = self.sampling_config.num_train_envs
seeded_experiments = []
for i in range(num_experiments):
with self.temp_config_mutation():
self.experiment_config.seed += i
self.sampling_config.train_seed += i * num_train_envs
seeded_experiments.append(self.build(add_seeding_info_to_name=True))
return seeded_experiments
class _BuilderMixinActorFactory(ActorFutureProviderProtocol):
def __init__(self, continuous_actor_type: ContinuousActorType):

View File

@ -32,7 +32,7 @@ class LoggerFactory(ToStringMixin, ABC):
class LoggerFactoryDefault(LoggerFactory):
def __init__(
self,
logger_type: Literal["tensorboard", "wandb"] = "tensorboard",
logger_type: Literal["tensorboard", "wandb", "pandas"] = "tensorboard",
wandb_project: str | None = None,
):
if logger_type == "wandb" and wandb_project is None:
@ -47,17 +47,18 @@ class LoggerFactoryDefault(LoggerFactory):
run_id: str | None,
config_dict: dict,
) -> TLogger:
writer = SummaryWriter(log_dir)
writer.add_text(
"args",
str(
dict(
log_dir=log_dir,
logger_type=self.logger_type,
wandb_project=self.wandb_project,
if self.logger_type in ["wandb", "tensorboard"]:
writer = SummaryWriter(log_dir)
writer.add_text(
"args",
str(
dict(
log_dir=log_dir,
logger_type=self.logger_type,
wandb_project=self.wandb_project,
),
),
),
)
)
match self.logger_type:
case "wandb":
wandb_logger = WandbLogger(

View File

@ -24,7 +24,7 @@ class World:
trainer: Optional["BaseTrainer"] = None
def persist_path(self, filename: str) -> str:
return os.path.join(self.persist_directory, filename)
return os.path.abspath(os.path.join(self.persist_directory, filename))
def restore_path(self, filename: str) -> str:
if self.restore_directory is None:

View File

@ -1,7 +1,7 @@
"""Utils package."""
from tianshou.utils.logger.base import BaseLogger, LazyLogger
from tianshou.utils.logger.tensorboard import BasicLogger, TensorboardLogger
from tianshou.utils.logger.tensorboard import TensorboardLogger
from tianshou.utils.logger.wandb import WandbLogger
from tianshou.utils.lr_scheduler import MultipleLRSchedulers
from tianshou.utils.progress_bar import DummyTqdm, tqdm_config
@ -15,7 +15,6 @@ __all__ = [
"DummyTqdm",
"BaseLogger",
"TensorboardLogger",
"BasicLogger",
"LazyLogger",
"WandbLogger",
"deprecation",

View File

@ -3,14 +3,14 @@ from abc import ABC, abstractmethod
from collections.abc import Callable
from enum import Enum
from numbers import Number
from typing import Any
import numpy as np
VALID_LOG_VALS_TYPE = int | Number | np.number | np.ndarray | float
VALID_LOG_VALS = typing.get_args(
VALID_LOG_VALS_TYPE,
) # I know it's stupid, but we can't use Union type in isinstance
# It's unfortunate, but we can't use Union type in isinstance, hence we resort to this
VALID_LOG_VALS = typing.get_args(VALID_LOG_VALS_TYPE)
TRestoredData = dict[str, np.ndarray | dict[str, "TRestoredData"]]
class DataScope(Enum):
@ -21,15 +21,7 @@ class DataScope(Enum):
class BaseLogger(ABC):
"""The base class for any logger which is compatible with trainer.
Try to overwrite write() method to use your own writer.
:param train_interval: the log interval in log_train_data(). Default to 1000.
:param test_interval: the log interval in log_test_data(). Default to 1.
:param update_interval: the log interval in log_update_data(). Default to 1000.
:param info_interval: the log interval in log_info_data(). Default to 1.
"""
"""The base class for any logger which is compatible with trainer."""
def __init__(
self,
@ -37,12 +29,20 @@ class BaseLogger(ABC):
test_interval: int = 1,
update_interval: int = 1000,
info_interval: int = 1,
exclude_arrays: bool = True,
) -> None:
""":param train_interval: the log interval in log_train_data(). Default to 1000.
:param test_interval: the log interval in log_test_data(). Default to 1.
:param update_interval: the log interval in log_update_data(). Default to 1000.
:param info_interval: the log interval in log_info_data(). Default to 1.
:param exclude_arrays: whether to exclude numpy arrays from the logger's output
"""
super().__init__()
self.train_interval = train_interval
self.test_interval = test_interval
self.update_interval = update_interval
self.info_interval = info_interval
self.exclude_arrays = exclude_arrays
self.last_log_train_step = -1
self.last_log_test_step = -1
self.last_log_update_step = -1
@ -57,46 +57,15 @@ class BaseLogger(ABC):
:param data: the data to write with format ``{key: value}``.
"""
@staticmethod
def prepare_dict_for_logging(
input_dict: dict[str, Any],
parent_key: str = "",
delimiter: str = "/",
exclude_arrays: bool = True,
) -> dict[str, VALID_LOG_VALS_TYPE]:
"""Flattens and filters a nested dictionary by recursively traversing all levels and compressing the keys.
@abstractmethod
def prepare_dict_for_logging(self, log_data: dict) -> dict[str, VALID_LOG_VALS_TYPE]:
"""Prepare the dict for logging by filtering out invalid data types.
Filtering is performed with respect to valid logging data types.
If necessary, reformulate the dict to be compatible with the writer.
:param input_dict: The nested dictionary to be flattened and filtered.
:param parent_key: The parent key used as a prefix before the input_dict keys.
:param delimiter: The delimiter used to separate the keys.
:param exclude_arrays: Whether to exclude numpy arrays from the output.
:return: A flattened dictionary where the keys are compressed and values are filtered.
:param log_data: the dict to be prepared for logging.
:return: the prepared dict.
"""
result = {}
def add_to_result(
cur_dict: dict,
prefix: str = "",
) -> None:
for key, value in cur_dict.items():
if exclude_arrays and isinstance(value, np.ndarray):
continue
new_key = prefix + delimiter + key
new_key = new_key.lstrip(delimiter)
if isinstance(value, dict):
add_to_result(
value,
new_key,
)
elif isinstance(value, VALID_LOG_VALS):
result[new_key] = value
add_to_result(input_dict, prefix=parent_key)
return result
def log_train_data(self, log_data: dict, step: int) -> None:
"""Use writer to log statistics generated during training.
@ -106,8 +75,8 @@ class BaseLogger(ABC):
"""
# TODO: move interval check to calling method
if step - self.last_log_train_step >= self.train_interval:
log_data = self.prepare_dict_for_logging(log_data, parent_key=DataScope.TRAIN.value)
self.write("train/env_step", step, log_data)
log_data = self.prepare_dict_for_logging(log_data)
self.write(f"{DataScope.TRAIN.value}/env_step", step, log_data)
self.last_log_train_step = step
def log_test_data(self, log_data: dict, step: int) -> None:
@ -118,8 +87,8 @@ class BaseLogger(ABC):
"""
# TODO: move interval check to calling method (stupid because log_test_data is only called from function in utils.py, not from BaseTrainer)
if step - self.last_log_test_step >= self.test_interval:
log_data = self.prepare_dict_for_logging(log_data, parent_key=DataScope.TEST.value)
self.write(DataScope.TEST.value + "/env_step", step, log_data)
log_data = self.prepare_dict_for_logging(log_data)
self.write(f"{DataScope.TEST.value}/env_step", step, log_data)
self.last_log_test_step = step
def log_update_data(self, log_data: dict, step: int) -> None:
@ -130,8 +99,8 @@ class BaseLogger(ABC):
"""
# TODO: move interval check to calling method
if step - self.last_log_update_step >= self.update_interval:
log_data = self.prepare_dict_for_logging(log_data, parent_key=DataScope.UPDATE.value)
self.write(DataScope.UPDATE.value + "/gradient_step", step, log_data)
log_data = self.prepare_dict_for_logging(log_data)
self.write(f"{DataScope.UPDATE.value}/gradient_step", step, log_data)
self.last_log_update_step = step
def log_info_data(self, log_data: dict, step: int) -> None:
@ -143,8 +112,8 @@ class BaseLogger(ABC):
if (
step - self.last_log_info_step >= self.info_interval
): # TODO: move interval check to calling method
log_data = self.prepare_dict_for_logging(log_data, parent_key=DataScope.INFO.value)
self.write(DataScope.INFO.value + "/epoch", step, log_data)
log_data = self.prepare_dict_for_logging(log_data)
self.write(f"{DataScope.INFO.value}/epoch", step, log_data)
self.last_log_info_step = step
@abstractmethod
@ -166,7 +135,7 @@ class BaseLogger(ABC):
@abstractmethod
def restore_data(self) -> tuple[int, int, int]:
"""Return the metadata from existing log.
"""Restore internal data if present and return the metadata from existing log for continuation of training.
If it finds nothing or an error occurs during the recover process, it will
return the default parameters.
@ -174,6 +143,16 @@ class BaseLogger(ABC):
:return: epoch, env_step, gradient_step.
"""
@abstractmethod
def restore_logged_data(
self,
log_path: str,
) -> TRestoredData:
"""Load the logged data from disk for post-processing.
:return: a dict containing the logged data.
"""
class LazyLogger(BaseLogger):
"""A logger that does nothing. Used as the placeholder in trainer."""
@ -181,6 +160,12 @@ class LazyLogger(BaseLogger):
def __init__(self) -> None:
super().__init__()
def prepare_dict_for_logging(
self,
data: dict[str, VALID_LOG_VALS_TYPE],
) -> dict[str, VALID_LOG_VALS_TYPE]:
return data
def write(self, step_type: str, step: int, data: dict[str, VALID_LOG_VALS_TYPE]) -> None:
"""The LazyLogger writes nothing."""
@ -195,3 +180,6 @@ class LazyLogger(BaseLogger):
def restore_data(self) -> tuple[int, int, int]:
return 0, 0, 0
def restore_logged_data(self, log_path: str) -> dict:
return {}

View File

@ -1,11 +1,17 @@
from collections.abc import Callable
from typing import Any
import numpy as np
from matplotlib.figure import Figure
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils.logger.base import VALID_LOG_VALS_TYPE, BaseLogger
from tianshou.utils.warning import deprecation
from tianshou.utils.logger.base import (
VALID_LOG_VALS,
VALID_LOG_VALS_TYPE,
BaseLogger,
TRestoredData,
)
class TensorboardLogger(BaseLogger):
@ -38,9 +44,58 @@ class TensorboardLogger(BaseLogger):
self.last_save_step = -1
self.writer = writer
def write(self, step_type: str, step: int, data: dict[str, VALID_LOG_VALS_TYPE]) -> None:
def prepare_dict_for_logging(
self,
input_dict: dict[str, Any],
parent_key: str = "",
delimiter: str = "/",
exclude_arrays: bool = True,
) -> dict[str, VALID_LOG_VALS_TYPE]:
"""Flattens and filters a nested dictionary by recursively traversing all levels and compressing the keys.
Filtering is performed with respect to valid logging data types.
:param input_dict: The nested dictionary to be flattened and filtered.
:param parent_key: The parent key used as a prefix before the input_dict keys.
:param delimiter: The delimiter used to separate the keys.
:param exclude_arrays: Whether to exclude numpy arrays from the output.
:return: A flattened dictionary where the keys are compressed and values are filtered.
"""
result = {}
def add_to_result(
cur_dict: dict,
prefix: str = "",
) -> None:
for key, value in cur_dict.items():
if exclude_arrays and isinstance(value, np.ndarray):
continue
new_key = prefix + delimiter + key
new_key = new_key.lstrip(delimiter)
if isinstance(value, dict):
add_to_result(
value,
new_key,
)
elif isinstance(value, VALID_LOG_VALS):
result[new_key] = value
add_to_result(input_dict, prefix=parent_key)
return result
def write(self, step_type: str, step: int, data: dict[str, Any]) -> None:
scope, step_name = step_type.split("/")
self.writer.add_scalar(step_type, step, global_step=step)
for k, v in data.items():
self.writer.add_scalar(k, v, global_step=step)
scope_key = f"{scope}/{k}"
if isinstance(v, np.ndarray):
self.writer.add_histogram(scope_key, v, global_step=step, bins="auto")
elif isinstance(v, Figure):
self.writer.add_figure(scope_key, v, global_step=step)
else:
self.writer.add_scalar(scope_key, v, global_step=step)
if self.write_flush: # issue 580
self.writer.flush() # issue #482
@ -81,16 +136,56 @@ class TensorboardLogger(BaseLogger):
return epoch, env_step, gradient_step
def restore_logged_data(
self,
log_path: str,
) -> TRestoredData:
"""Restores the logged data from the tensorboard log directory.
class BasicLogger(TensorboardLogger):
"""BasicLogger has changed its name to TensorboardLogger in #427.
The result is a nested dictionary where the keys are the tensorboard keys
and the values are the corresponding numpy arrays. The keys in each level
form a nested structure, where the hierarchy is represented by the slashes
in the tensorboard key-strings.
"""
ea = event_accumulator.EventAccumulator(log_path)
ea.Reload()
This class is for compatibility.
"""
def add_value_to_innermost_nested_dict(
data_dict: dict[str, Any],
key_string: str,
value: Any,
) -> None:
"""A particular logic, walking through the keys in the
`key_string` and adding the value to the `data_dict` in a nested manner,
creating nested dictionaries on the fly if necessary, or updating existing ones.
The value is added only to the innermost-nested dictionary.
def __init__(self, *args: Any, **kwargs: Any) -> None:
deprecation(
"Class BasicLogger is marked as deprecated and will be removed soon. "
"Please use TensorboardLogger instead.",
)
super().__init__(*args, **kwargs)
Example:
-------
>>> data_dict = {}
>>> add_value_to_innermost_nested_dict(data_dict, "a/b/c", 1)
>>> data_dict
{"a": {"b": {"c": 1}}}
"""
keys = key_string.split("/")
cur_nested_dict = data_dict
# walk through the intermediate keys to reach the innermost-nested dict,
# creating nested dictionaries on the fly if necessary
for k in keys[:-1]:
cur_nested_dict = cur_nested_dict.setdefault(k, {})
# After the loop above,
# this is the innermost-nested dict, where the value is finally set
# for the last key in the key_string
cur_nested_dict[keys[-1]] = value
restored_data: dict[str, np.ndarray | dict] = {}
for key_string in ea.scalars.Keys():
add_value_to_innermost_nested_dict(
restored_data,
key_string,
np.array([s.value for s in ea.scalars.Items(key_string)]),
)
return restored_data

View File

@ -6,7 +6,7 @@ from collections.abc import Callable
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import BaseLogger, TensorboardLogger
from tianshou.utils.logger.base import VALID_LOG_VALS_TYPE
from tianshou.utils.logger.base import VALID_LOG_VALS_TYPE, TRestoredData
with contextlib.suppress(ImportError):
import wandb
@ -79,8 +79,18 @@ class WandbLogger(BaseLogger):
if not wandb.run
else wandb.run
)
# TODO: don't access private attribute!
self.wandb_run._label(repo="tianshou") # type: ignore
self.tensorboard_logger: TensorboardLogger | None = None
self.writer: SummaryWriter | None = None
def prepare_dict_for_logging(self, log_data: dict) -> dict[str, VALID_LOG_VALS_TYPE]:
if self.tensorboard_logger is None:
raise Exception(
"`logger` needs to load the Tensorboard Writer before "
"preparing data for logging. Try `logger.load(SummaryWriter(log_path))`",
)
return self.tensorboard_logger.prepare_dict_for_logging(log_data)
def load(self, writer: SummaryWriter) -> None:
self.writer = writer
@ -95,7 +105,7 @@ class WandbLogger(BaseLogger):
def write(self, step_type: str, step: int, data: dict[str, VALID_LOG_VALS_TYPE]) -> None:
if self.tensorboard_logger is None:
raise Exception(
raise RuntimeError(
"`logger` needs to load the Tensorboard Writer before "
"writing data. Try `logger.load(SummaryWriter(log_path))`",
)
@ -156,3 +166,12 @@ class WandbLogger(BaseLogger):
except KeyError:
env_step = 0
return epoch, env_step, gradient_step
def restore_logged_data(self, log_path: str) -> TRestoredData:
if self.tensorboard_logger is None:
raise NotImplementedError(
"Restoring logged data directly from W&B is not yet implemented."
"Try instantiating the internal TensorboardLogger by calling something"
"like `logger.load(SummaryWriter(log_path))`",
)
return self.tensorboard_logger.restore_logged_data(log_path)