# Changes ## Dependencies - New extra "eval" ## Api Extension - `Experiment` and `ExperimentConfig` now have a `name`, that can however be overridden when `Experiment.run()` is called - When building an `Experiment` from an `ExperimentConfig`, the user has the option to add info about seeds to the name. - New method in `ExperimentConfig` called `build_default_seeded_experiments` - `SamplingConfig` has an explicit training seed, `test_seed` is inferred. - New `evaluation` package for repeating the same experiment with multiple seeds and aggregating the results (important extension!). Currently in alpha state. - Loggers can now restore the logged data into python by using the new `restore_logged_data` ## Breaking Changes - `AtariEnvFactory` (in examples) now receives explicit train and test seeds - `EnvFactoryRegistered` now requires an explicit `test_seed` - `BaseLogger.prepare_dict_for_logging` is now abstract --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
178 lines
7.0 KiB
Python
178 lines
7.0 KiB
Python
import argparse
|
|
import contextlib
|
|
import os
|
|
from collections.abc import Callable
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.utils import BaseLogger, TensorboardLogger
|
|
from tianshou.utils.logger.base import VALID_LOG_VALS_TYPE, TRestoredData
|
|
|
|
with contextlib.suppress(ImportError):
|
|
import wandb
|
|
|
|
|
|
class WandbLogger(BaseLogger):
|
|
"""Weights and Biases logger that sends data to https://wandb.ai/.
|
|
|
|
This logger creates three panels with plots: train, test, and update.
|
|
Make sure to select the correct access for each panel in weights and biases:
|
|
|
|
Example of usage:
|
|
::
|
|
|
|
logger = WandbLogger()
|
|
logger.load(SummaryWriter(log_path))
|
|
result = OnpolicyTrainer(policy, train_collector, test_collector,
|
|
logger=logger).run()
|
|
|
|
:param train_interval: the log interval in log_train_data(). Default to 1000.
|
|
:param test_interval: the log interval in log_test_data(). Default to 1.
|
|
:param update_interval: the log interval in log_update_data().
|
|
Default to 1000.
|
|
:param info_interval: the log interval in log_info_data(). Default to 1.
|
|
:param save_interval: the save interval in save_data(). Default to 1 (save at
|
|
the end of each epoch).
|
|
:param write_flush: whether to flush tensorboard result after each
|
|
add_scalar operation. Default to True.
|
|
:param str project: W&B project name. Default to "tianshou".
|
|
:param str name: W&B run name. Default to None. If None, random name is assigned.
|
|
:param str entity: W&B team/organization name. Default to None.
|
|
:param str run_id: run id of W&B run to be resumed. Default to None.
|
|
:param argparse.Namespace config: experiment configurations. Default to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
train_interval: int = 1000,
|
|
test_interval: int = 1,
|
|
update_interval: int = 1000,
|
|
info_interval: int = 1,
|
|
save_interval: int = 1000,
|
|
write_flush: bool = True,
|
|
project: str | None = None,
|
|
name: str | None = None,
|
|
entity: str | None = None,
|
|
run_id: str | None = None,
|
|
config: argparse.Namespace | dict | None = None,
|
|
monitor_gym: bool = True,
|
|
) -> None:
|
|
super().__init__(train_interval, test_interval, update_interval, info_interval)
|
|
self.last_save_step = -1
|
|
self.save_interval = save_interval
|
|
self.write_flush = write_flush
|
|
self.restored = False
|
|
if project is None:
|
|
project = os.getenv("WANDB_PROJECT", "tianshou")
|
|
|
|
self.wandb_run = (
|
|
wandb.init(
|
|
project=project,
|
|
name=name,
|
|
id=run_id,
|
|
resume="allow",
|
|
entity=entity,
|
|
sync_tensorboard=True,
|
|
monitor_gym=monitor_gym,
|
|
config=config, # type: ignore
|
|
)
|
|
if not wandb.run
|
|
else wandb.run
|
|
)
|
|
# TODO: don't access private attribute!
|
|
self.wandb_run._label(repo="tianshou") # type: ignore
|
|
self.tensorboard_logger: TensorboardLogger | None = None
|
|
self.writer: SummaryWriter | None = None
|
|
|
|
def prepare_dict_for_logging(self, log_data: dict) -> dict[str, VALID_LOG_VALS_TYPE]:
|
|
if self.tensorboard_logger is None:
|
|
raise Exception(
|
|
"`logger` needs to load the Tensorboard Writer before "
|
|
"preparing data for logging. Try `logger.load(SummaryWriter(log_path))`",
|
|
)
|
|
return self.tensorboard_logger.prepare_dict_for_logging(log_data)
|
|
|
|
def load(self, writer: SummaryWriter) -> None:
|
|
self.writer = writer
|
|
self.tensorboard_logger = TensorboardLogger(
|
|
writer,
|
|
self.train_interval,
|
|
self.test_interval,
|
|
self.update_interval,
|
|
self.save_interval,
|
|
self.write_flush,
|
|
)
|
|
|
|
def write(self, step_type: str, step: int, data: dict[str, VALID_LOG_VALS_TYPE]) -> None:
|
|
if self.tensorboard_logger is None:
|
|
raise RuntimeError(
|
|
"`logger` needs to load the Tensorboard Writer before "
|
|
"writing data. Try `logger.load(SummaryWriter(log_path))`",
|
|
)
|
|
self.tensorboard_logger.write(step_type, step, data)
|
|
|
|
def save_data(
|
|
self,
|
|
epoch: int,
|
|
env_step: int,
|
|
gradient_step: int,
|
|
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
|
|
) -> None:
|
|
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
|
|
|
|
:param epoch: the epoch in trainer.
|
|
:param env_step: the env_step in trainer.
|
|
:param gradient_step: the gradient_step in trainer.
|
|
:param function save_checkpoint_fn: a hook defined by user, see trainer
|
|
documentation for detail.
|
|
"""
|
|
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
|
|
self.last_save_step = epoch
|
|
checkpoint_path = save_checkpoint_fn(epoch, env_step, gradient_step)
|
|
|
|
checkpoint_artifact = wandb.Artifact(
|
|
"run_" + self.wandb_run.id + "_checkpoint", # type: ignore
|
|
type="model",
|
|
metadata={
|
|
"save/epoch": epoch,
|
|
"save/env_step": env_step,
|
|
"save/gradient_step": gradient_step,
|
|
"checkpoint_path": str(checkpoint_path),
|
|
},
|
|
)
|
|
checkpoint_artifact.add_file(str(checkpoint_path))
|
|
self.wandb_run.log_artifact(checkpoint_artifact) # type: ignore
|
|
|
|
def restore_data(self) -> tuple[int, int, int]:
|
|
checkpoint_artifact = self.wandb_run.use_artifact( # type: ignore
|
|
f"run_{self.wandb_run.id}_checkpoint:latest", # type: ignore
|
|
)
|
|
assert checkpoint_artifact is not None, "W&B dataset artifact doesn't exist"
|
|
|
|
checkpoint_artifact.download(
|
|
os.path.dirname(checkpoint_artifact.metadata["checkpoint_path"]),
|
|
)
|
|
|
|
try: # epoch / gradient_step
|
|
epoch = checkpoint_artifact.metadata["save/epoch"]
|
|
self.last_save_step = self.last_log_test_step = epoch
|
|
gradient_step = checkpoint_artifact.metadata["save/gradient_step"]
|
|
self.last_log_update_step = gradient_step
|
|
except KeyError:
|
|
epoch, gradient_step = 0, 0
|
|
try: # offline trainer doesn't have env_step
|
|
env_step = checkpoint_artifact.metadata["save/env_step"]
|
|
self.last_log_train_step = env_step
|
|
except KeyError:
|
|
env_step = 0
|
|
return epoch, env_step, gradient_step
|
|
|
|
def restore_logged_data(self, log_path: str) -> TRestoredData:
|
|
if self.tensorboard_logger is None:
|
|
raise NotImplementedError(
|
|
"Restoring logged data directly from W&B is not yet implemented."
|
|
"Try instantiating the internal TensorboardLogger by calling something"
|
|
"like `logger.load(SummaryWriter(log_path))`",
|
|
)
|
|
return self.tensorboard_logger.restore_logged_data(log_path)
|