# Changes ## Dependencies - New extra "eval" ## Api Extension - `Experiment` and `ExperimentConfig` now have a `name`, that can however be overridden when `Experiment.run()` is called - When building an `Experiment` from an `ExperimentConfig`, the user has the option to add info about seeds to the name. - New method in `ExperimentConfig` called `build_default_seeded_experiments` - `SamplingConfig` has an explicit training seed, `test_seed` is inferred. - New `evaluation` package for repeating the same experiment with multiple seeds and aggregating the results (important extension!). Currently in alpha state. - Loggers can now restore the logged data into python by using the new `restore_logged_data` ## Breaking Changes - `AtariEnvFactory` (in examples) now receives explicit train and test seeds - `EnvFactoryRegistered` now requires an explicit `test_seed` - `BaseLogger.prepare_dict_for_logging` is now abstract --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
192 lines
7.3 KiB
Python
192 lines
7.3 KiB
Python
from collections.abc import Callable
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
from matplotlib.figure import Figure
|
|
from tensorboard.backend.event_processing import event_accumulator
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.utils.logger.base import (
|
|
VALID_LOG_VALS,
|
|
VALID_LOG_VALS_TYPE,
|
|
BaseLogger,
|
|
TRestoredData,
|
|
)
|
|
|
|
|
|
class TensorboardLogger(BaseLogger):
|
|
"""A logger that relies on tensorboard SummaryWriter by default to visualize and log statistics.
|
|
|
|
:param SummaryWriter writer: the writer to log data.
|
|
:param train_interval: the log interval in log_train_data(). Default to 1000.
|
|
:param test_interval: the log interval in log_test_data(). Default to 1.
|
|
:param update_interval: the log interval in log_update_data(). Default to 1000.
|
|
:param info_interval: the log interval in log_info_data(). Default to 1.
|
|
:param save_interval: the save interval in save_data(). Default to 1 (save at
|
|
the end of each epoch).
|
|
:param write_flush: whether to flush tensorboard result after each
|
|
add_scalar operation. Default to True.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
writer: SummaryWriter,
|
|
train_interval: int = 1000,
|
|
test_interval: int = 1,
|
|
update_interval: int = 1000,
|
|
info_interval: int = 1,
|
|
save_interval: int = 1,
|
|
write_flush: bool = True,
|
|
) -> None:
|
|
super().__init__(train_interval, test_interval, update_interval, info_interval)
|
|
self.save_interval = save_interval
|
|
self.write_flush = write_flush
|
|
self.last_save_step = -1
|
|
self.writer = writer
|
|
|
|
def prepare_dict_for_logging(
|
|
self,
|
|
input_dict: dict[str, Any],
|
|
parent_key: str = "",
|
|
delimiter: str = "/",
|
|
exclude_arrays: bool = True,
|
|
) -> dict[str, VALID_LOG_VALS_TYPE]:
|
|
"""Flattens and filters a nested dictionary by recursively traversing all levels and compressing the keys.
|
|
|
|
Filtering is performed with respect to valid logging data types.
|
|
|
|
:param input_dict: The nested dictionary to be flattened and filtered.
|
|
:param parent_key: The parent key used as a prefix before the input_dict keys.
|
|
:param delimiter: The delimiter used to separate the keys.
|
|
:param exclude_arrays: Whether to exclude numpy arrays from the output.
|
|
:return: A flattened dictionary where the keys are compressed and values are filtered.
|
|
"""
|
|
result = {}
|
|
|
|
def add_to_result(
|
|
cur_dict: dict,
|
|
prefix: str = "",
|
|
) -> None:
|
|
for key, value in cur_dict.items():
|
|
if exclude_arrays and isinstance(value, np.ndarray):
|
|
continue
|
|
|
|
new_key = prefix + delimiter + key
|
|
new_key = new_key.lstrip(delimiter)
|
|
|
|
if isinstance(value, dict):
|
|
add_to_result(
|
|
value,
|
|
new_key,
|
|
)
|
|
elif isinstance(value, VALID_LOG_VALS):
|
|
result[new_key] = value
|
|
|
|
add_to_result(input_dict, prefix=parent_key)
|
|
return result
|
|
|
|
def write(self, step_type: str, step: int, data: dict[str, Any]) -> None:
|
|
scope, step_name = step_type.split("/")
|
|
self.writer.add_scalar(step_type, step, global_step=step)
|
|
for k, v in data.items():
|
|
scope_key = f"{scope}/{k}"
|
|
if isinstance(v, np.ndarray):
|
|
self.writer.add_histogram(scope_key, v, global_step=step, bins="auto")
|
|
elif isinstance(v, Figure):
|
|
self.writer.add_figure(scope_key, v, global_step=step)
|
|
else:
|
|
self.writer.add_scalar(scope_key, v, global_step=step)
|
|
if self.write_flush: # issue 580
|
|
self.writer.flush() # issue #482
|
|
|
|
def save_data(
|
|
self,
|
|
epoch: int,
|
|
env_step: int,
|
|
gradient_step: int,
|
|
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
|
|
) -> None:
|
|
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
|
|
self.last_save_step = epoch
|
|
save_checkpoint_fn(epoch, env_step, gradient_step)
|
|
self.write("save/epoch", epoch, {"save/epoch": epoch})
|
|
self.write("save/env_step", env_step, {"save/env_step": env_step})
|
|
self.write(
|
|
"save/gradient_step",
|
|
gradient_step,
|
|
{"save/gradient_step": gradient_step},
|
|
)
|
|
|
|
def restore_data(self) -> tuple[int, int, int]:
|
|
ea = event_accumulator.EventAccumulator(self.writer.log_dir)
|
|
ea.Reload()
|
|
|
|
try: # epoch / gradient_step
|
|
epoch = ea.scalars.Items("save/epoch")[-1].step
|
|
self.last_save_step = self.last_log_test_step = epoch
|
|
gradient_step = ea.scalars.Items("save/gradient_step")[-1].step
|
|
self.last_log_update_step = gradient_step
|
|
except KeyError:
|
|
epoch, gradient_step = 0, 0
|
|
try: # offline trainer doesn't have env_step
|
|
env_step = ea.scalars.Items("save/env_step")[-1].step
|
|
self.last_log_train_step = env_step
|
|
except KeyError:
|
|
env_step = 0
|
|
|
|
return epoch, env_step, gradient_step
|
|
|
|
def restore_logged_data(
|
|
self,
|
|
log_path: str,
|
|
) -> TRestoredData:
|
|
"""Restores the logged data from the tensorboard log directory.
|
|
|
|
The result is a nested dictionary where the keys are the tensorboard keys
|
|
and the values are the corresponding numpy arrays. The keys in each level
|
|
form a nested structure, where the hierarchy is represented by the slashes
|
|
in the tensorboard key-strings.
|
|
"""
|
|
ea = event_accumulator.EventAccumulator(log_path)
|
|
ea.Reload()
|
|
|
|
def add_value_to_innermost_nested_dict(
|
|
data_dict: dict[str, Any],
|
|
key_string: str,
|
|
value: Any,
|
|
) -> None:
|
|
"""A particular logic, walking through the keys in the
|
|
`key_string` and adding the value to the `data_dict` in a nested manner,
|
|
creating nested dictionaries on the fly if necessary, or updating existing ones.
|
|
The value is added only to the innermost-nested dictionary.
|
|
|
|
|
|
Example:
|
|
-------
|
|
>>> data_dict = {}
|
|
>>> add_value_to_innermost_nested_dict(data_dict, "a/b/c", 1)
|
|
>>> data_dict
|
|
{"a": {"b": {"c": 1}}}
|
|
"""
|
|
keys = key_string.split("/")
|
|
|
|
cur_nested_dict = data_dict
|
|
# walk through the intermediate keys to reach the innermost-nested dict,
|
|
# creating nested dictionaries on the fly if necessary
|
|
for k in keys[:-1]:
|
|
cur_nested_dict = cur_nested_dict.setdefault(k, {})
|
|
# After the loop above,
|
|
# this is the innermost-nested dict, where the value is finally set
|
|
# for the last key in the key_string
|
|
cur_nested_dict[keys[-1]] = value
|
|
|
|
restored_data: dict[str, np.ndarray | dict] = {}
|
|
for key_string in ea.scalars.Keys():
|
|
add_value_to_innermost_nested_dict(
|
|
restored_data,
|
|
key_string,
|
|
np.array([s.value for s in ea.scalars.Items(key_string)]),
|
|
)
|
|
|
|
return restored_data
|