# Changes ## Dependencies - New extra "eval" ## Api Extension - `Experiment` and `ExperimentConfig` now have a `name`, that can however be overridden when `Experiment.run()` is called - When building an `Experiment` from an `ExperimentConfig`, the user has the option to add info about seeds to the name. - New method in `ExperimentConfig` called `build_default_seeded_experiments` - `SamplingConfig` has an explicit training seed, `test_seed` is inferred. - New `evaluation` package for repeating the same experiment with multiple seeds and aggregating the results (important extension!). Currently in alpha state. - Loggers can now restore the logged data into python by using the new `restore_logged_data` ## Breaking Changes - `AtariEnvFactory` (in examples) now receives explicit train and test seeds - `EnvFactoryRegistered` now requires an explicit `test_seed` - `BaseLogger.prepare_dict_for_logging` is now abstract --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
97 lines
3.0 KiB
Python
97 lines
3.0 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import os
|
|
from collections.abc import Sequence
|
|
from typing import Literal
|
|
|
|
import torch
|
|
|
|
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
|
from tianshou.highlevel.config import SamplingConfig
|
|
from tianshou.highlevel.experiment import (
|
|
ExperimentConfig,
|
|
TRPOExperimentBuilder,
|
|
)
|
|
from tianshou.highlevel.params.dist_fn import (
|
|
DistributionFunctionFactoryIndependentGaussians,
|
|
)
|
|
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
|
|
from tianshou.highlevel.params.policy_params import TRPOParams
|
|
from tianshou.utils import logging
|
|
from tianshou.utils.logging import datetime_tag
|
|
|
|
|
|
def main(
|
|
experiment_config: ExperimentConfig,
|
|
task: str = "Ant-v4",
|
|
buffer_size: int = 4096,
|
|
hidden_sizes: Sequence[int] = (64, 64),
|
|
lr: float = 1e-3,
|
|
gamma: float = 0.99,
|
|
epoch: int = 100,
|
|
step_per_epoch: int = 30000,
|
|
step_per_collect: int = 1024,
|
|
repeat_per_collect: int = 1,
|
|
batch_size: int = 16,
|
|
training_num: int = 16,
|
|
test_num: int = 10,
|
|
rew_norm: bool = True,
|
|
gae_lambda: float = 0.95,
|
|
bound_action_method: Literal["clip", "tanh"] = "clip",
|
|
lr_decay: bool = True,
|
|
norm_adv: bool = True,
|
|
optim_critic_iters: int = 20,
|
|
max_kl: float = 0.01,
|
|
backtrack_coeff: float = 0.8,
|
|
max_backtracks: int = 10,
|
|
) -> None:
|
|
log_name = os.path.join(task, "trpo", str(experiment_config.seed), datetime_tag())
|
|
|
|
sampling_config = SamplingConfig(
|
|
num_epochs=epoch,
|
|
step_per_epoch=step_per_epoch,
|
|
batch_size=batch_size,
|
|
num_train_envs=training_num,
|
|
num_test_envs=test_num,
|
|
buffer_size=buffer_size,
|
|
step_per_collect=step_per_collect,
|
|
repeat_per_collect=repeat_per_collect,
|
|
)
|
|
|
|
env_factory = MujocoEnvFactory(
|
|
task,
|
|
train_seed=sampling_config.train_seed,
|
|
test_seed=sampling_config.test_seed,
|
|
obs_norm=True,
|
|
)
|
|
|
|
experiment = (
|
|
TRPOExperimentBuilder(env_factory, experiment_config, sampling_config)
|
|
.with_trpo_params(
|
|
TRPOParams(
|
|
discount_factor=gamma,
|
|
gae_lambda=gae_lambda,
|
|
action_bound_method=bound_action_method,
|
|
reward_normalization=rew_norm,
|
|
advantage_normalization=norm_adv,
|
|
optim_critic_iters=optim_critic_iters,
|
|
max_kl=max_kl,
|
|
backtrack_coeff=backtrack_coeff,
|
|
max_backtracks=max_backtracks,
|
|
lr=lr,
|
|
lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
|
|
if lr_decay
|
|
else None,
|
|
dist_fn=DistributionFunctionFactoryIndependentGaussians(),
|
|
),
|
|
)
|
|
.with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True)
|
|
.with_critic_factory_default(hidden_sizes, torch.nn.Tanh)
|
|
.build()
|
|
)
|
|
experiment.run(override_experiment_name=log_name)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.run_cli(main)
|