# Changes ## Dependencies - New extra "eval" ## Api Extension - `Experiment` and `ExperimentConfig` now have a `name`, that can however be overridden when `Experiment.run()` is called - When building an `Experiment` from an `ExperimentConfig`, the user has the option to add info about seeds to the name. - New method in `ExperimentConfig` called `build_default_seeded_experiments` - `SamplingConfig` has an explicit training seed, `test_seed` is inferred. - New `evaluation` package for repeating the same experiment with multiple seeds and aggregating the results (important extension!). Currently in alpha state. - Loggers can now restore the logged data into python by using the new `restore_logged_data` ## Breaking Changes - `AtariEnvFactory` (in examples) now receives explicit train and test seeds - `EnvFactoryRegistered` now requires an explicit `test_seed` - `BaseLogger.prepare_dict_for_logging` is now abstract --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
219 lines
8.1 KiB
Python
219 lines
8.1 KiB
Python
"""The rliable-evaluation module provides a high-level interface to evaluate the results of an experiment with multiple runs
|
|
on different seeds using the rliable library. The API is experimental and subject to change!.
|
|
"""
|
|
|
|
import os
|
|
from dataclasses import asdict, dataclass, fields
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import scipy.stats as sst
|
|
from rliable import library as rly
|
|
from rliable import plot_utils
|
|
|
|
from tianshou.highlevel.experiment import Experiment
|
|
from tianshou.utils import logging
|
|
from tianshou.utils.logger.base import DataScope
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class LoggedSummaryData:
|
|
mean: np.ndarray
|
|
std: np.ndarray
|
|
max: np.ndarray
|
|
min: np.ndarray
|
|
|
|
|
|
@dataclass
|
|
class LoggedCollectStats:
|
|
env_step: np.ndarray | None = None
|
|
n_collected_episodes: np.ndarray | None = None
|
|
n_collected_steps: np.ndarray | None = None
|
|
collect_time: np.ndarray | None = None
|
|
collect_speed: np.ndarray | None = None
|
|
returns_stat: LoggedSummaryData | None = None
|
|
lens_stat: LoggedSummaryData | None = None
|
|
|
|
@classmethod
|
|
def from_data_dict(cls, data: dict) -> "LoggedCollectStats":
|
|
"""Create a LoggedCollectStats object from a dictionary.
|
|
|
|
Converts SequenceSummaryStats from dict format to dataclass format and ignores fields that are not present.
|
|
"""
|
|
field_names = [f.name for f in fields(cls)]
|
|
for k, v in data.items():
|
|
if k not in field_names:
|
|
data.pop(k)
|
|
if isinstance(v, dict):
|
|
data[k] = LoggedSummaryData(**v)
|
|
return cls(**data)
|
|
|
|
|
|
@dataclass
|
|
class RLiableExperimentResult:
|
|
"""The result of an experiment that can be used with the rliable library."""
|
|
|
|
exp_dir: str
|
|
"""The base directory where each sub-directory contains the results of one experiment run."""
|
|
|
|
test_episode_returns_RE: np.ndarray
|
|
"""The test episodes for each run of the experiment where each row corresponds to one run."""
|
|
|
|
env_steps_E: np.ndarray
|
|
"""The number of environment steps at which the test episodes were evaluated."""
|
|
|
|
@classmethod
|
|
def load_from_disk(cls, exp_dir: str) -> "RLiableExperimentResult":
|
|
"""Load the experiment result from disk.
|
|
|
|
:param exp_dir: The directory from where the experiment results are restored.
|
|
"""
|
|
test_episode_returns = []
|
|
env_step_at_test = None
|
|
|
|
# TODO: env_step_at_test should not be defined in a loop and overwritten at each iteration
|
|
# just for retrieving them. We might need a cleaner directory structure.
|
|
for entry in os.scandir(exp_dir):
|
|
if entry.name.startswith(".") or not entry.is_dir():
|
|
continue
|
|
|
|
exp = Experiment.from_directory(entry.path)
|
|
logger = exp.logger_factory.create_logger(
|
|
entry.path,
|
|
entry.name,
|
|
None,
|
|
asdict(exp.config),
|
|
)
|
|
data = logger.restore_logged_data(entry.path)
|
|
|
|
if DataScope.TEST.value not in data or not data[DataScope.TEST.value]:
|
|
continue
|
|
restored_test_data = data[DataScope.TEST.value]
|
|
if not isinstance(restored_test_data, dict):
|
|
raise RuntimeError(
|
|
f"Expected entry with key {DataScope.TEST.value} data to be a dictionary, "
|
|
f"but got {restored_test_data=}.",
|
|
)
|
|
test_data = LoggedCollectStats.from_data_dict(restored_test_data)
|
|
|
|
if test_data.returns_stat is None:
|
|
continue
|
|
test_episode_returns.append(test_data.returns_stat.mean)
|
|
env_step_at_test = test_data.env_step
|
|
|
|
if not test_episode_returns or env_step_at_test is None:
|
|
raise ValueError(f"No experiment data found in {exp_dir}.")
|
|
|
|
return cls(
|
|
test_episode_returns_RE=np.array(test_episode_returns),
|
|
env_steps_E=np.array(env_step_at_test),
|
|
exp_dir=exp_dir,
|
|
)
|
|
|
|
def _get_rliable_data(
|
|
self,
|
|
algo_name: str | None = None,
|
|
score_thresholds: np.ndarray | None = None,
|
|
) -> tuple[dict, np.ndarray, np.ndarray]:
|
|
"""Return the data in the format expected by the rliable library.
|
|
|
|
:param algo_name: The name of the algorithm to be shown in the figure legend. If None, the name of the algorithm
|
|
is set to the experiment dir.
|
|
:param score_thresholds: The score thresholds for the performance profile. If None, the thresholds are inferred
|
|
from the minimum and maximum test episode returns.
|
|
|
|
:return: A tuple score_dict, env_steps, and score_thresholds.
|
|
"""
|
|
if score_thresholds is None:
|
|
score_thresholds = np.linspace(
|
|
np.min(self.test_episode_returns_RE),
|
|
np.max(self.test_episode_returns_RE),
|
|
101,
|
|
)
|
|
|
|
if algo_name is None:
|
|
algo_name = os.path.basename(self.exp_dir)
|
|
|
|
score_dict = {algo_name: self.test_episode_returns_RE}
|
|
|
|
return score_dict, self.env_steps_E, score_thresholds
|
|
|
|
def eval_results(
|
|
self,
|
|
algo_name: str | None = None,
|
|
score_thresholds: np.ndarray | None = None,
|
|
save_plots: bool = False,
|
|
show_plots: bool = True,
|
|
) -> tuple[plt.Figure, plt.Axes, plt.Figure, plt.Axes]:
|
|
"""Evaluate the results of an experiment and create a sample efficiency curve and a performance profile.
|
|
|
|
:param algo_name: The name of the algorithm to be shown in the figure legend. If None, the name of the algorithm
|
|
is set to the experiment dir.
|
|
:param score_thresholds: The score thresholds for the performance profile. If None, the thresholds are inferred
|
|
from the minimum and maximum test episode returns.
|
|
:param save_plots: If True, the figures are saved to the experiment directory.
|
|
:param show_plots: If True, the figures are shown.
|
|
|
|
:return: The created figures and axes.
|
|
"""
|
|
score_dict, env_steps, score_thresholds = self._get_rliable_data(
|
|
algo_name,
|
|
score_thresholds,
|
|
)
|
|
|
|
iqm = lambda scores: sst.trim_mean(scores, proportiontocut=0.25, axis=0)
|
|
iqm_scores, iqm_cis = rly.get_interval_estimates(score_dict, iqm)
|
|
|
|
# Plot IQM sample efficiency curve
|
|
fig_iqm, ax_iqm = plt.subplots(ncols=1, figsize=(7, 5), constrained_layout=True)
|
|
plot_utils.plot_sample_efficiency_curve(
|
|
env_steps,
|
|
iqm_scores,
|
|
iqm_cis,
|
|
algorithms=None,
|
|
xlabel="env step",
|
|
ylabel="IQM episode return",
|
|
ax=ax_iqm,
|
|
)
|
|
if show_plots:
|
|
plt.show(block=False)
|
|
|
|
if save_plots:
|
|
iqm_sample_efficiency_curve_path = os.path.abspath(
|
|
os.path.join(
|
|
self.exp_dir,
|
|
"iqm_sample_efficiency_curve.png",
|
|
),
|
|
)
|
|
log.info(f"Saving iqm sample efficiency curve to {iqm_sample_efficiency_curve_path}.")
|
|
fig_iqm.savefig(iqm_sample_efficiency_curve_path)
|
|
|
|
final_score_dict = {algo: returns[:, [-1]] for algo, returns in score_dict.items()}
|
|
score_distributions, score_distributions_cis = rly.create_performance_profile(
|
|
final_score_dict,
|
|
score_thresholds,
|
|
)
|
|
|
|
# Plot score distributions
|
|
fig_profile, ax_profile = plt.subplots(ncols=1, figsize=(7, 5), constrained_layout=True)
|
|
plot_utils.plot_performance_profiles(
|
|
score_distributions,
|
|
score_thresholds,
|
|
performance_profile_cis=score_distributions_cis,
|
|
xlabel=r"Episode return $(\tau)$",
|
|
ax=ax_profile,
|
|
)
|
|
|
|
if save_plots:
|
|
profile_curve_path = os.path.abspath(
|
|
os.path.join(self.exp_dir, "performance_profile.png"),
|
|
)
|
|
log.info(f"Saving performance profile curve to {profile_curve_path}.")
|
|
fig_profile.savefig(profile_curve_path)
|
|
if show_plots:
|
|
plt.show(block=False)
|
|
|
|
return fig_iqm, ax_iqm, fig_profile, ax_profile
|