# Changes ## Dependencies - New extra "eval" ## Api Extension - `Experiment` and `ExperimentConfig` now have a `name`, that can however be overridden when `Experiment.run()` is called - When building an `Experiment` from an `ExperimentConfig`, the user has the option to add info about seeds to the name. - New method in `ExperimentConfig` called `build_default_seeded_experiments` - `SamplingConfig` has an explicit training seed, `test_seed` is inferred. - New `evaluation` package for repeating the same experiment with multiple seeds and aggregating the results (important extension!). Currently in alpha state. - Loggers can now restore the logged data into python by using the new `restore_logged_data` ## Breaking Changes - `AtariEnvFactory` (in examples) now receives explicit train and test seeds - `EnvFactoryRegistered` now requires an explicit `test_seed` - `BaseLogger.prepare_dict_for_logging` is now abstract --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
186 lines
6.9 KiB
Python
186 lines
6.9 KiB
Python
import typing
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Callable
|
|
from enum import Enum
|
|
from numbers import Number
|
|
|
|
import numpy as np
|
|
|
|
VALID_LOG_VALS_TYPE = int | Number | np.number | np.ndarray | float
|
|
# It's unfortunate, but we can't use Union type in isinstance, hence we resort to this
|
|
VALID_LOG_VALS = typing.get_args(VALID_LOG_VALS_TYPE)
|
|
|
|
TRestoredData = dict[str, np.ndarray | dict[str, "TRestoredData"]]
|
|
|
|
|
|
class DataScope(Enum):
|
|
TRAIN = "train"
|
|
TEST = "test"
|
|
UPDATE = "update"
|
|
INFO = "info"
|
|
|
|
|
|
class BaseLogger(ABC):
|
|
"""The base class for any logger which is compatible with trainer."""
|
|
|
|
def __init__(
|
|
self,
|
|
train_interval: int = 1000,
|
|
test_interval: int = 1,
|
|
update_interval: int = 1000,
|
|
info_interval: int = 1,
|
|
exclude_arrays: bool = True,
|
|
) -> None:
|
|
""":param train_interval: the log interval in log_train_data(). Default to 1000.
|
|
:param test_interval: the log interval in log_test_data(). Default to 1.
|
|
:param update_interval: the log interval in log_update_data(). Default to 1000.
|
|
:param info_interval: the log interval in log_info_data(). Default to 1.
|
|
:param exclude_arrays: whether to exclude numpy arrays from the logger's output
|
|
"""
|
|
super().__init__()
|
|
self.train_interval = train_interval
|
|
self.test_interval = test_interval
|
|
self.update_interval = update_interval
|
|
self.info_interval = info_interval
|
|
self.exclude_arrays = exclude_arrays
|
|
self.last_log_train_step = -1
|
|
self.last_log_test_step = -1
|
|
self.last_log_update_step = -1
|
|
self.last_log_info_step = -1
|
|
|
|
@abstractmethod
|
|
def write(self, step_type: str, step: int, data: dict[str, VALID_LOG_VALS_TYPE]) -> None:
|
|
"""Specify how the writer is used to log data.
|
|
|
|
:param str step_type: namespace which the data dict belongs to.
|
|
:param step: stands for the ordinate of the data dict.
|
|
:param data: the data to write with format ``{key: value}``.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def prepare_dict_for_logging(self, log_data: dict) -> dict[str, VALID_LOG_VALS_TYPE]:
|
|
"""Prepare the dict for logging by filtering out invalid data types.
|
|
|
|
If necessary, reformulate the dict to be compatible with the writer.
|
|
|
|
:param log_data: the dict to be prepared for logging.
|
|
:return: the prepared dict.
|
|
"""
|
|
|
|
def log_train_data(self, log_data: dict, step: int) -> None:
|
|
"""Use writer to log statistics generated during training.
|
|
|
|
:param log_data: a dict containing the information returned by the collector during the train step.
|
|
:param step: stands for the timestep the collector result is logged.
|
|
"""
|
|
# TODO: move interval check to calling method
|
|
if step - self.last_log_train_step >= self.train_interval:
|
|
log_data = self.prepare_dict_for_logging(log_data)
|
|
self.write(f"{DataScope.TRAIN.value}/env_step", step, log_data)
|
|
self.last_log_train_step = step
|
|
|
|
def log_test_data(self, log_data: dict, step: int) -> None:
|
|
"""Use writer to log statistics generated during evaluating.
|
|
|
|
:param log_data:a dict containing the information returned by the collector during the evaluation step.
|
|
:param step: stands for the timestep the collector result is logged.
|
|
"""
|
|
# TODO: move interval check to calling method (stupid because log_test_data is only called from function in utils.py, not from BaseTrainer)
|
|
if step - self.last_log_test_step >= self.test_interval:
|
|
log_data = self.prepare_dict_for_logging(log_data)
|
|
self.write(f"{DataScope.TEST.value}/env_step", step, log_data)
|
|
self.last_log_test_step = step
|
|
|
|
def log_update_data(self, log_data: dict, step: int) -> None:
|
|
"""Use writer to log statistics generated during updating.
|
|
|
|
:param log_data:a dict containing the information returned during the policy update step.
|
|
:param step: stands for the timestep the policy training data is logged.
|
|
"""
|
|
# TODO: move interval check to calling method
|
|
if step - self.last_log_update_step >= self.update_interval:
|
|
log_data = self.prepare_dict_for_logging(log_data)
|
|
self.write(f"{DataScope.UPDATE.value}/gradient_step", step, log_data)
|
|
self.last_log_update_step = step
|
|
|
|
def log_info_data(self, log_data: dict, step: int) -> None:
|
|
"""Use writer to log global statistics.
|
|
|
|
:param log_data: a dict containing information of data collected at the end of an epoch.
|
|
:param step: stands for the timestep the training info is logged.
|
|
"""
|
|
if (
|
|
step - self.last_log_info_step >= self.info_interval
|
|
): # TODO: move interval check to calling method
|
|
log_data = self.prepare_dict_for_logging(log_data)
|
|
self.write(f"{DataScope.INFO.value}/epoch", step, log_data)
|
|
self.last_log_info_step = step
|
|
|
|
@abstractmethod
|
|
def save_data(
|
|
self,
|
|
epoch: int,
|
|
env_step: int,
|
|
gradient_step: int,
|
|
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
|
|
) -> None:
|
|
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
|
|
|
|
:param epoch: the epoch in trainer.
|
|
:param env_step: the env_step in trainer.
|
|
:param gradient_step: the gradient_step in trainer.
|
|
:param function save_checkpoint_fn: a hook defined by user, see trainer
|
|
documentation for detail.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def restore_data(self) -> tuple[int, int, int]:
|
|
"""Restore internal data if present and return the metadata from existing log for continuation of training.
|
|
|
|
If it finds nothing or an error occurs during the recover process, it will
|
|
return the default parameters.
|
|
|
|
:return: epoch, env_step, gradient_step.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def restore_logged_data(
|
|
self,
|
|
log_path: str,
|
|
) -> TRestoredData:
|
|
"""Load the logged data from disk for post-processing.
|
|
|
|
:return: a dict containing the logged data.
|
|
"""
|
|
|
|
|
|
class LazyLogger(BaseLogger):
|
|
"""A logger that does nothing. Used as the placeholder in trainer."""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def prepare_dict_for_logging(
|
|
self,
|
|
data: dict[str, VALID_LOG_VALS_TYPE],
|
|
) -> dict[str, VALID_LOG_VALS_TYPE]:
|
|
return data
|
|
|
|
def write(self, step_type: str, step: int, data: dict[str, VALID_LOG_VALS_TYPE]) -> None:
|
|
"""The LazyLogger writes nothing."""
|
|
|
|
def save_data(
|
|
self,
|
|
epoch: int,
|
|
env_step: int,
|
|
gradient_step: int,
|
|
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
|
|
) -> None:
|
|
pass
|
|
|
|
def restore_data(self) -> tuple[int, int, int]:
|
|
return 0, 0, 0
|
|
|
|
def restore_logged_data(self, log_path: str) -> dict:
|
|
return {}
|