Maximilian Huettenrauch d9a201754c updates
2024-03-26 14:23:54 +01:00

244 lines
8.4 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import csv
import os
import re
from collections import defaultdict
from dataclasses import asdict, dataclass
import numpy as np
import tqdm
from tensorboard.backend.event_processing import event_accumulator
from tianshou.highlevel.experiment import Experiment
@dataclass
class RLiableExperimentResult:
exp_dir: str
algorithms: list[str]
score_dict: dict[str, np.ndarray] # (n_runs x n_epochs + 1)
env_steps: np.ndarray # (n_epochs + 1)
score_thresholds: np.ndarray
@staticmethod
def load_from_disk(exp_dir: str, algo_name: str, score_thresholds: np.ndarray | None = None):
"""Load the experiment result from disk.
:param exp_dir: The directory from where the experiment results are restored.
:param algo_name: The name of the algorithm used in the figure legend.
:param score_thresholds: The thresholds used to create the performance profile.
If None, it will be created from the test episode returns.
"""
test_episode_returns = []
for entry in os.scandir(exp_dir):
if entry.name.startswith(".") or not entry.is_dir():
continue
exp = Experiment.from_directory(entry.path)
logger = exp.logger_factory.create_logger(
entry.path,
entry.name,
None,
asdict(exp.config),
)
data = logger.restore_logged_data(entry.path)
test_data = data["test"]
test_episode_returns.append(test_data["returns_stat"]["mean"])
env_step = test_data["env_step"]
if score_thresholds is None:
score_thresholds = np.linspace(0.0, np.max(test_episode_returns), 101)
return RLiableExperimentResult(
algorithms=[algo_name],
score_dict={algo_name: np.array(test_episode_returns)},
env_steps=np.array(env_step),
score_thresholds=score_thresholds,
exp_dir=exp_dir,
)
def eval_results(results: RLiableExperimentResult, save_figure=False):
"""Evaluate the results of an experiment and create the performance profile and sample efficiency curve.
:param results: The results of the experiment. Needs to be compatible with the rliable API. This can be achieved by
calling the method `load_from_disk` from the RLiableExperimentResult class.
:param save_figure: Whether to save the figures as png to the experiment directory.
:return: The axes of the created figures.
"""
import matplotlib.pyplot as plt
import scipy.stats as sst
import seaborn as sns
from rliable import library as rly
from rliable import plot_utils
iqm = lambda scores: sst.trim_mean(scores, proportiontocut=0.25, axis=0)
iqm_scores, iqm_cis = rly.get_interval_estimates(results.score_dict, iqm, reps=50000)
# Plot IQM sample efficiency curve
fig, ax1 = plt.subplots(ncols=1, figsize=(7, 5))
plot_utils.plot_sample_efficiency_curve(
results.env_steps,
iqm_scores,
iqm_cis,
algorithms=results.algorithms,
xlabel=r"Number of env steps",
ylabel="IQM episode return",
ax=ax1,
)
if save_figure:
plt.savefig(os.path.join(results.exp_dir, "iqm_sample_efficiency_curve.png"))
final_score_dict = {algo: returns[:, [-1]] for algo, returns in results.score_dict.items()}
score_distributions, score_distributions_cis = rly.create_performance_profile(
final_score_dict,
results.score_thresholds,
)
# Plot score distributions
fig, ax2 = plt.subplots(ncols=1, figsize=(7, 5))
plot_utils.plot_performance_profiles(
score_distributions,
results.score_thresholds,
performance_profile_cis=score_distributions_cis,
colors=dict(
zip(
results.algorithms,
sns.color_palette("colorblind", n_colors=len(results.algorithms)),
strict=True,
),
),
xlabel=r"Episode return $(\tau)$",
ax=ax2,
)
if save_figure:
plt.savefig(os.path.join(results.exp_dir, "performance_profile.png"))
return ax1, ax2
def find_all_files(root_dir, pattern):
"""Find all files under root_dir according to relative pattern."""
file_list = []
for dirname, _, files in os.walk(root_dir):
for f in files:
absolute_path = os.path.join(dirname, f)
if re.match(pattern, absolute_path):
file_list.append(absolute_path)
return file_list
def group_files(file_list, pattern):
res = defaultdict(list)
for f in file_list:
match = re.search(pattern, f)
key = match.group() if match else ""
res[key].append(f)
return res
def csv2numpy(csv_file):
csv_dict = defaultdict(list)
with open(csv_file) as f:
for row in csv.DictReader(f):
for k, v in row.items():
csv_dict[k].append(eval(v))
return {k: np.array(v) for k, v in csv_dict.items()}
def convert_tfevents_to_csv(root_dir, refresh=False):
"""Recursively convert test/reward from all tfevent file under root_dir to csv.
This function assumes that there is at most one tfevents file in each directory
and will add suffix to that directory.
:param bool refresh: re-create csv file under any condition.
"""
tfevent_files = find_all_files(root_dir, re.compile(r"^.*tfevents.*$"))
print(f"Converting {len(tfevent_files)} tfevents files under {root_dir} ...")
result = {}
with tqdm.tqdm(tfevent_files) as t:
for tfevent_file in t:
t.set_postfix(file=tfevent_file)
output_file = os.path.join(os.path.split(tfevent_file)[0], "test_reward.csv")
if os.path.exists(output_file) and not refresh:
with open(output_file) as f:
content = list(csv.reader(f))
if content[0] == ["env_step", "reward", "time"]:
for i in range(1, len(content)):
content[i] = list(map(eval, content[i]))
result[output_file] = content
continue
ea = event_accumulator.EventAccumulator(tfevent_file)
ea.Reload()
initial_time = ea._first_event_timestamp
content = [["env_step", "reward", "time"]]
for test_reward in ea.scalars.Items("test/reward"):
content.append(
[
round(test_reward.step, 4),
round(test_reward.value, 4),
round(test_reward.wall_time - initial_time, 4),
],
)
with open(output_file, "w") as f:
csv.writer(f).writerows(content)
result[output_file] = content
return result
def merge_csv(csv_files, root_dir, remove_zero=False):
"""Merge result in csv_files into a single csv file."""
assert len(csv_files) > 0
if remove_zero:
for v in csv_files.values():
if v[1][0] == 0:
v.pop(1)
sorted_keys = sorted(csv_files.keys())
sorted_values = [csv_files[k][1:] for k in sorted_keys]
content = [
[
"env_step",
"reward",
"reward:shaded",
*["reward:" + os.path.relpath(f, root_dir) for f in sorted_keys],
],
]
for rows in zip(*sorted_values, strict=True):
array = np.array(rows)
assert len(set(array[:, 0])) == 1, (set(array[:, 0]), array[:, 0])
line = [rows[0][0], round(array[:, 1].mean(), 4), round(array[:, 1].std(), 4)]
line += array[:, 1].tolist()
content.append(line)
output_path = os.path.join(root_dir, f"test_reward_{len(csv_files)}seeds.csv")
print(f"Output merged csv file to {output_path} with {len(content[1:])} lines.")
with open(output_path, "w") as f:
csv.writer(f).writerows(content)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--refresh",
action="store_true",
help="Re-generate all csv files instead of using existing one.",
)
parser.add_argument(
"--remove-zero",
action="store_true",
help="Remove the data point of env_step == 0.",
)
parser.add_argument("--root-dir", type=str)
args = parser.parse_args()
csv_files = convert_tfevents_to_csv(args.root_dir, args.refresh)
merge_csv(csv_files, args.root_dir, args.remove_zero)