Tianshou/examples/ddpg_example.py
2018-02-28 18:44:06 +08:00

94 lines
3.4 KiB
Python

#!/usr/bin/env python
from __future__ import absolute_import
import tensorflow as tf
import gym
import numpy as np
import time
import argparse
# our lib imports here! It's ok to append path in examples
import sys
sys.path.append('..')
from tianshou.core import losses
from tianshou.data.batch import Batch
import tianshou.data.advantage_estimation as advantage_estimation
import tianshou.core.policy as policy
import tianshou.core.value_function.action_value as value_function
import tianshou.core.opt as opt
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--render", action="store_true", default=False)
args = parser.parse_args()
env = gym.make('Pendulum-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.shape
clip_param = 0.2
num_batches = 10
batch_size = 512
seed = 0
np.random.seed(seed)
tf.set_random_seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
action_ph = tf.placeholder(tf.float32, shape=(None,) + action_dim)
def my_network():
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.relu)
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
action = tf.layers.dense(net, action_dim[0], activation=None)
action_value_input = tf.concat([observation_ph, action_ph], axis=1)
net = tf.layers.dense(action_value_input, 32, activation=tf.nn.relu)
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
action_value = tf.layers.dense(net, 1, activation=None)
return action, action_value
### 2. build policy, loss, optimizer
actor = policy.Deterministic(my_network, observation_placeholder=observation_ph, weight_update=1e-3)
critic = value_function.ActionValue(my_network, observation_placeholder=observation_ph,
action_placeholder=action_ph, weight_update=1e-3)
critic_loss = losses.value_mse(critic)
critic_optimizer = tf.train.AdamOptimizer(1e-3)
critic_train_op = critic_optimizer.minimize(critic_loss, var_list=critic.trainable_variables)
dpg_grads = opt.DPG(actor, critic) # not sure if it's correct
actor_optimizer = tf.train.AdamOptimizer(1e-4)
actor_train_op = actor_optimizer.apply_gradients(dpg_grads)
### 3. define data collection
data_collector = Batch(env, actor, [advantage_estimation.ddpg_return(actor, critic)], [actor, critic],
render = args.render)
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# assign actor to pi_old
actor.sync_weights() # TODO: automate this for policies with target network
critic.sync_weights()
start_time = time.time()
for i in range(100):
# collect data
data_collector.collect(num_episodes=50)
# print current return
print('Epoch {}:'.format(i))
data_collector.statistics()
# update network
for _ in range(num_batches):
feed_dict = data_collector.next_batch(batch_size)
sess.run([actor_train_op, critic_train_op], feed_dict=feed_dict)
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))